File: index.rst

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (1148 lines) | stat: -rw-r--r-- 47,853 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
.. include:: references.txt

.. _astropy-time:

****************************************************
Time and Dates (`astropy.time`)
****************************************************

.. |Quantity| replace:: :class:`~astropy.units.Quantity`
.. |Longitude| replace:: :class:`~astropy.coordinates.Longitude`
.. |EarthLocation| replace:: :class:`~astropy.coordinates.EarthLocation`
.. |SkyCoord| replace:: :class:`~astropy.coordinates.SkyCoord`

Introduction
============

The `astropy.time` package provides functionality for manipulating times and
dates.  Specific emphasis is placed on supporting time scales (e.g. UTC, TAI,
UT1, TDB) and time representations (e.g. JD, MJD, ISO 8601) that are used in
astronomy and required to calculate, e.g., sidereal times and barycentric
corrections.
It uses Cython to wrap the C language `ERFA`_ time and calendar
routines, using a fast and memory efficient vectorization scheme.

All time manipulations and arithmetic operations are done internally using two
64-bit floats to represent time.  Floating point algorithms from [#]_ are used so
that the |Time| object maintains sub-nanosecond precision over times spanning
the age of the universe.

.. [#] `Shewchuk, 1997, Discrete & Computational Geometry 18(3):305-363
        <http://www.cs.berkeley.edu/~jrs/papers/robustr.pdf>`_

Getting Started
===============

The basic way to use `astropy.time` is to create a |Time|
object by supplying one or more input time values as well as the `time format`_ and
`time scale`_ of those values.  The input time(s) can either be a single scalar like
``"2010-01-01 00:00:00"`` or a list or a `numpy` array of values as shown below.
In general any output values have the same shape (scalar or array) as the input.

  >>> from astropy.time import Time
  >>> times = ['1999-01-01T00:00:00.123456789', '2010-01-01T00:00:00']
  >>> t = Time(times, format='isot', scale='utc')
  >>> t
  <Time object: scale='utc' format='isot' value=['1999-01-01T00:00:00.123' '2010-01-01T00:00:00.000']>
  >>> t[1]
  <Time object: scale='utc' format='isot' value=2010-01-01T00:00:00.000>

The ``format`` argument specifies how to interpret the input values,
e.g. ISO or JD or Unix time.  The ``scale`` argument specifies the `time scale`_ for the
values, e.g. UTC or TT or UT1.  The ``scale`` argument is optional and
defaults to UTC except for `Time from epoch formats`_.
We could have written the above as::

  >>> t = Time(times, format='isot')

When the format of the input can be unambiguously determined then the
``format`` argument is not required, so we can simplify even further::

  >>> t = Time(times)

Now let's get the representation of these times in the JD and MJD
formats by requesting the corresponding |Time| attributes::

  >>> t.jd
  array([ 2451179.50000143,  2455197.5       ])
  >>> t.mjd
  array([ 51179.00000143,  55197.        ])

The default representation can be changed by setting the `format` attribute::

  >>> t.format = 'fits'
  >>> t
  <Time object: scale='utc' format='fits' value=['1999-01-01T00:00:00.123(UTC)'
                                                 '2010-01-01T00:00:00.000(UTC)']>
  >>> t.format = 'isot'

We can also convert to a different time scale, for instance from UTC to
TT.  This uses the same attribute mechanism as above but now returns a new
|Time| object::

  >>> t2 = t.tt
  >>> t2
  <Time object: scale='tt' format='isot' value=['1999-01-01T00:01:04.307' '2010-01-01T00:01:06.184']>
  >>> t2.jd
  array([ 2451179.5007443 ,  2455197.50076602])

Note that both the ISO (ISOT) and JD representations of ``t2`` are different
than for ``t`` because they are expressed relative to the TT time scale.  Of
course, from the numbers or strings one could not tell; one format in which
this information is kept is the ``fits`` format::

  >>> print(t2.fits)
  ['1999-01-01T00:01:04.307(TT)' '2010-01-01T00:01:06.184(TT)']

Finally, some further examples of what is possible.  For details, see
the API documentation below.

  >>> dt = t[1] - t[0]
  >>> dt  # doctest: +FLOAT_CMP
  <TimeDelta object: scale='tai' format='jd' value=4018.00002172>

Here, note the conversion of the timescale to TAI.  Time differences
can only have scales in which one day is always equal to 86400 seconds.

  >>> import numpy as np
  >>> t[0] + dt * np.linspace(0.,1.,12)
  <Time object: scale='utc' format='isot' value=['1999-01-01T00:00:00.123' '2000-01-01T06:32:43.930'
   '2000-12-31T13:05:27.737' '2001-12-31T19:38:11.544'
   '2003-01-01T02:10:55.351' '2004-01-01T08:43:39.158'
   '2004-12-31T15:16:22.965' '2005-12-31T21:49:06.772'
   '2007-01-01T04:21:49.579' '2008-01-01T10:54:33.386'
   '2008-12-31T17:27:17.193' '2010-01-01T00:00:00.000']>

  >>> t.sidereal_time('apparent', 'greenwich')
  <Longitude [ 6.68050179, 6.70281947] hourangle>

Using `astropy.time`
=====================

Time object basics
-------------------

In `astropy.time` a "time" is a single instant of time which is
independent of the way the time is represented (the "format") and the time
"scale" which specifies the offset and scaling relation of the unit of time.
There is no distinction made between a "date" and a "time" since both concepts
(as loosely defined in common usage) are just different representations of a
moment in time.

Once a |Time| object is created it cannot be altered internally.  In code lingo
it is "immutable."  In particular the common operation of "converting" to a
different `time scale`_ is always performed by returning a copy of the original
|Time| object which has been converted to the new time scale.


.. _time-format:

Time Format
^^^^^^^^^^^

The time format specifies how an instant of time is represented.  The currently
available formats are can be found in the ``Time.FORMATS`` dict and
are listed in the table below.  Each of these formats is implemented as a class
that derives from the base :class:`~astropy.time.TimeFormat` class.
This class structure can be easily adapted and extended by users for
specialized time formats not supplied in `astropy.time`.

===========  =================================================  ==============================
Format            Class                                         Example argument
===========  =================================================  ==============================
byear        :class:`~astropy.time.TimeBesselianEpoch`          1950.0
byear_str    :class:`~astropy.time.TimeBesselianEpochString`    'B1950.0'
cxcsec       :class:`~astropy.time.TimeCxcSec`                  63072064.184
datetime     :class:`~astropy.time.TimeDatetime`                datetime(2000, 1, 2, 12, 0, 0)
decimalyear  :class:`~astropy.time.TimeDecimalYear`             2000.45
fits         :class:`~astropy.time.TimeFITS`                    '2000-01-01T00:00:00.000(TAI)'
gps          :class:`~astropy.time.TimeGPS`                     630720013.0
iso          :class:`~astropy.time.TimeISO`                     '2000-01-01 00:00:00.000'
isot         :class:`~astropy.time.TimeISOT`                    '2000-01-01T00:00:00.000'
jd           :class:`~astropy.time.TimeJD`                      2451544.5
jyear        :class:`~astropy.time.TimeJulianEpoch`             2000.0
jyear_str    :class:`~astropy.time.TimeJulianEpochString`       'J2000.0'
mjd          :class:`~astropy.time.TimeMJD`                     51544.0
plot_date    :class:`~astropy.time.TimePlotDate`                730120.0003703703
unix         :class:`~astropy.time.TimeUnix`                    946684800.0
yday         :class:`~astropy.time.TimeYearDayTime`             2000:001:00:00:00.000
===========  =================================================  ==============================

.. note:: The :class:`~astropy.time.TimeFITS` format allows for most
   but not all of the the FITS standard [#]_. Not implemented (yet) is
   support for a ``LOCAL`` timescale. Furthermore, FITS supports some deprecated
   names for timescales; these are translated to the formal names upon
   initialization.  Furthermore, any specific realization information,
   such as ``UT(NIST)`` is stored only as long as the time scale is not changed.
.. [#] `Rots et al. 2015, A&A 574:A36 <http://adsabs.harvard.edu/abs/2015A%26A...574A..36R>`_

Changing format
"""""""""""""""

The default representation can be changed by setting the ``format`` attribute in place::

  >>> t = Time('2000-01-02')
  >>> t.format = 'jd'
  >>> t
  <Time object: scale='utc' format='jd' value=2451545.5>

Be aware that when changing format, the current output subformat (see section below)
may not exist in the new format.  In this case the subformat will not be
preserved::

  >>> t = Time('2000-01-02', format='fits', out_subfmt='longdate')
  >>> t.value
  '+02000-01-02(UTC)'
  >>> t.format = 'iso'
  >>> t.out_subfmt
  u'*'
  >>> t.format = 'fits'
  >>> t.value
  '2000-01-02T00:00:00.000(UTC)'


Subformat
"""""""""

The time format classes :class:`~astropy.time.TimeISO`,
:class:`~astropy.time.TimeISOT`, :class:`~astropy.time.TimeFITS`, and
:class:`~astropy.time.TimeYearDayTime` support the concept of
subformats.  This allows for variations on the basic theme of a format in both
the input string parsing and the output.

The supported subformats are ``date_hms``, ``date_hm``, and ``date``
for all but the :class:`~astropy.time.TimeFITS` format; the latter
does not support ``date_hm`` but does support ``longdate_hms`` and
``longdate`` for years before the year 0 and after the year 10000.  The
table below illustrates these subformats for ``iso``, ``fits``, ``yday``
formats:

========  ============ ==============================
Format    Subformat    Input / output
========  ============ ==============================
``iso``   date_hms     2001-01-02 03:04:05.678
``iso``   date_hm      2001-01-02 03:04
``iso``   date         2001-01-02
``fits``  date_hms     2001-01-02T03:04:05.678(UTC)
``fits``  longdate_hms +02001-01-02T03:04:05.678(UTC)
``fits``  longdate     +02001-01-02(UTC)
``yday``  date_hms     2001:032:03:04:05.678
``yday``  date_hm      2001:032:03:04
``yday``  date         2001:032
========  ============ ==============================

Time from epoch formats
"""""""""""""""""""""""

The formats ``cxcsec``, ``gps``, and ``unix`` are a little special in
that they provide a floating point representation of the elapsed
time in seconds since a particular reference date.  These formats have
a intrinsic time scale which is used to compute the elapsed seconds
since the reference date.

========== ====== ========================
Format      Scale  Reference date
========== ====== ========================
``cxcsec``   TT   ``1998-01-01 00:00:00``
``unix``    UTC   ``1970-01-01 00:00:00``
``gps``     TAI   ``1980-01-06 00:00:19``
========== ====== ========================

Unlike the other formats which default to UTC, if no ``scale`` is provided when
initializing a |Time| object then the above intrinsic scale is used.
This is done for computational efficiency.

.. _time-scale:

Time Scale
^^^^^^^^^^

The time scale (or `time standard
<http://en.wikipedia.org/wiki/Time_standard>`_) is "a specification for
measuring time: either the rate at which time passes; or points in time; or
both" [#]_. See also [#]_ and [#]_.
::

  >>> Time.SCALES
  ('tai', 'tcb', 'tcg', 'tdb', 'tt', 'ut1', 'utc')

====== =================================
Scale        Description
====== =================================
tai    International Atomic Time   (TAI)
tcb    Barycentric Coordinate Time (TCB)
tcg    Geocentric Coordinate Time  (TCG)
tdb    Barycentric Dynamical Time  (TDB)
tt     Terrestrial Time            (TT)
ut1    Universal Time              (UT1)
utc    Coordinated Universal Time  (UTC)
====== =================================

.. [#] Wikipedia `time standard <http://en.wikipedia.org/wiki/Time_standard>`_ article
.. [#] SOFA Time Scale and Calendar Tools
       `(PDF) <http://www.iausofa.org/sofa_ts_c.pdf>`_
.. [#] `<http://www.ucolick.org/~sla/leapsecs/timescales.html>`_

The system of transformation between supported time scales is shown in the
figure below.  Further details are provided in the `Convert time scale`_ section.

.. image:: time_scale_conversion.png

Scalar or Array
^^^^^^^^^^^^^^^

A |Time| object can hold either a single time value or an array of time values.
The distinction is made entirely by the form of the input time(s).  If a |Time|
object holds a single value then any format outputs will be a single scalar
value, and likewise for arrays.  Like other arrays and lists, |Time| objects
holding arrays are subscriptable, returning scalar or array objects as
appropriate::

  >>> from astropy.time import Time
  >>> t = Time(100.0, format='mjd')
  >>> t.jd
  2400100.5
  >>> t = Time([100.0, 200.0, 300.], format='mjd')
  >>> t.jd
  array([ 2400100.5,  2400200.5,  2400300.5])
  >>> t[:2]
  <Time object: scale='utc' format='mjd' value=[ 100.  200.]>
  >>> t[2]
  <Time object: scale='utc' format='mjd' value=300.0>
  >>> t = Time(np.arange(50000., 50003.)[:, np.newaxis],
  ...          np.arange(0., 1., 0.5), format='mjd')
  >>> t
  <Time object: scale='utc' format='mjd' value=[[ 50000.   50000.5]
   [ 50001.   50001.5]
   [ 50002.   50002.5]]>
  >>> t[0]
  <Time object: scale='utc' format='mjd' value=[ 50000.   50000.5]>


.. _astropy-time-shape-methods:

Numpy method analogs
^^^^^^^^^^^^^^^^^^^^

For |Time| instances holding arrays, many of the same methods and attributes
that work on `~numpy.ndarray` instances can be used.  E.g., one can reshape
|Time| instances and take specific parts using
:meth:`~astropy.time.Time.reshape`,
:meth:`~astropy.time.Time.ravel`, :meth:`~astropy.time.Time.flatten`,
:attr:`~astropy.time.Time.T`, :meth:`~astropy.time.Time.transpose`,
:meth:`~astropy.time.Time.swapaxes`, :meth:`~astropy.time.Time.diagonal`,
:meth:`~astropy.time.Time.squeeze`, :meth:`~astropy.time.Time.take`::

  >>> t.reshape(2, 3)
  <Time object: scale='utc' format='mjd' value=[[ 50000.   50000.5  50001. ]
   [ 50001.5  50002.   50002.5]]>
  >>> t.T
  <Time object: scale='utc' format='mjd' value=[[ 50000.   50001.   50002. ]
   [ 50000.5  50001.5  50002.5]]>

Note that similarly to the `~numpy.ndarray` methods, all but
:meth:`~astropy.time.Time.flatten` try to use new views of the data,
with the data copied only if that it is impossible (as discussed, e.g., in
the documentation for numpy :func:`~numpy.reshape`).

Some arithmetic methods are supported as well: :meth:`~astropy.time.Time.min`,
:meth:`~astropy.time.Time.max`, :meth:`~astropy.time.Time.ptp`,
:meth:`~astropy.time.Time.sort`, :meth:`~astropy.time.Time.argmin`,
:meth:`~astropy.time.Time.argmax`, and :meth:`~astropy.time.Time.argsort`.
E.g.::

  >> t.max()
  <Time object: scale='utc' format='mjd' value=50002.5>
  >> t.ptp(axis=0)
  <TimeDelta object: scale='tai' format='jd' value=[ 2.  2.]>

.. _astropy-time-inferring-input:

Inferring input format
^^^^^^^^^^^^^^^^^^^^^^

The |Time| class initializer will not accept ambiguous inputs,
but it will make automatic inferences in cases where the inputs are
unambiguous.  This can apply when the times are supplied as `~datetime.datetime`
objects or strings.  In the latter case
it is not required to specify the format because the available
string formats have no overlap.  However, if the format is known in advance
the string parsing will be faster if the format is provided.
::

  >>> from datetime import datetime
  >>> t = Time(datetime(2010, 1, 2, 1, 2, 3))
  >>> t.format
  'datetime'
  >>> t = Time('2010-01-02 01:02:03')
  >>> t.format
  'iso'

Internal representation
^^^^^^^^^^^^^^^^^^^^^^^

The |Time| object maintains an internal representation of time as a pair of
double precision numbers expressing Julian days. The sum of the two numbers is
the Julian Date for that time relative to the given `time scale`_.  Users
requiring no better than microsecond precision over human time scales (~100
years) can safely ignore the internal representation details and skip this section.

This representation is driven by the underlying ERFA C-library implementation.
The ERFA routines take care throughout to maintain overall precision of the
double pair.  The user is free to choose the way in which total JD is
provided, though internally one part contains integer days and the
other the fraction of the day, as this ensures optimal accuracy for
all conversions.  The internal JD pair is available via the ``jd1``
and ``jd2`` attributes::

  >>> t = Time('2010-01-01 00:00:00', scale='utc')
  >>> t.jd1, t.jd2
  (2455197.5, 0.0)
  >>> t2 = t.tai
  >>> t2.jd1, t2.jd2  # doctest: +FLOAT_CMP
  (2455197.5, 0.0003935185185185185)

Creating a Time object
----------------------

The allowed |Time| arguments to create a time object are listed below:

**val** : numpy ndarray, list, str, or number
    Data to initialize table.
**val2** : numpy ndarray, list, str, or number; optional
    Data to initialize table.
**format** : str, optional
    Format of input value(s)
**scale** : str, optional
    Time scale of input value(s)
**precision** : int between 0 and 9 inclusive
    Decimal precision when outputting seconds as floating point
**in_subfmt** : str
    Unix glob to select subformats for parsing string input times
**out_subfmt** : str
    Unix glob to select subformats for outputting string times
**location** : |EarthLocation| or tuple, optional
    If a tuple, 3 |Quantity| items with length units for geocentric coordinates,
    or a longitude, latitude, and optional height for geodetic coordinates.
    Can be a single location, or one for each input time.

val
^^^

The ``val`` argument  specifies the input time or times and
can be a single string or number, or it can be a Python list or `numpy` array
of strings or numbers. To initialize a |Time| object based on a specified time,
it *must* be present.  If ``val`` is absent (or `None`), the |Time| object will
be created for the time corresponding to the instant the object is created.

In most situations one also needs to specify the `time scale`_ via the
``scale`` argument.  The |Time| class will never guess the `time scale`_,
so a simple example would be::

  >>> t1 = Time(50100.0, scale='tt', format='mjd')
  >>> t2 = Time('2010-01-01 00:00:00', scale='utc')

It is possible to create a new |Time| object from one or more existing time
objects.  In this case the format and scale will be inferred from the
first object unless explicitly specified.
::

  >>> Time([t1, t2])
  <Time object: scale='tt' format='mjd' value=[ 50100.  55197.00076602]>

val2
^^^^

The ``val2`` argument is available for specialized situations where extremely
high precision is required.  Recall that the internal representation of time
within `astropy.time` is two double-precision numbers that when summed give
the Julian date.  If provided the ``val2`` argument is used in combination with
``val`` to set the second the internal time values.  The exact interpretation of
``val2`` is determined by the input format class.  As of this release all
string-valued formats ignore ``val2`` and all numeric inputs effectively add
the two values in a way that maintains the highest precision.  Example::

  >>> t = Time(100.0, 0.000001, format='mjd', scale='tt')
  >>> t.jd, t.jd1, t.jd2  # doctest: +FLOAT_CMP
  (2400100.500001, 2400100.5, 1e-06)

format
^^^^^^

The `format` argument sets the time `time format`_, and as mentioned it is
required unless the format can be unambiguously determined from the input times.


scale
^^^^^

The ``scale`` argument sets the `time scale`_ and is required except for time
formats such as ``plot_date`` (:class:`~astropy.time.TimePlotDate`) and ``unix``
(:class:`~astropy.time.TimeUnix`).  These formats represent the duration
in SI seconds since a fixed instant in time which is independent of time scale.

precision
^^^^^^^^^^

The ``precision`` setting affects string formats when outputting a value that
includes seconds.  It must be an integer between 0 and 9.  There is no effect
when inputting time values from strings.  The default precision is 3.  Note
that the limit of 9 digits is driven by the way that ERFA handles fractional
seconds.  In practice this should should not be an issue.  ::

  >>> t = Time('B1950.0', scale='utc', precision=3)
  >>> t.byear_str
  'B1950.000'
  >>> t.precision = 0
  >>> t.byear_str
  'B1950'

in_subfmt
^^^^^^^^^

The ``in_subfmt`` argument provides a mechanism to select one or more
`subformat`_ values from the available subformats for string input.  Multiple
allowed subformats can be selected using Unix-style wildcard characters, in
particular ``*`` and ``?``, as documented in the Python `fnmatch
<http://docs.python.org/library/fnmatch.html>`_ module.

The default value for ``in_subfmt`` is ``*`` which matches any available
subformat.  This allows for convenient input of values with unknown or
heterogeneous subformat::

  >>> Time(['2000:001', '2000:002:03:04', '2001:003:04:05:06.789'])
  <Time object: scale='utc' format='yday'
   value=['2000:001:00:00:00.000' '2000:002:03:04:00.000' '2001:003:04:05:06.789']>

One can explicitly specify ``in_subfmt`` in order to strictly require a
certain subformat::

  >>> t = Time('2000:002:03:04', in_subfmt='date_hm')
  >>> t = Time('2000:002', in_subfmt='date_hm')  # doctest: +SKIP
  Traceback (most recent call last):
    ...
  ValueError: Input values did not match any of the formats where the
  format keyword is optional ['astropy_time', 'datetime',
  'byear_str', 'iso', 'isot', 'jyear_str', 'yday']

out_subfmt
^^^^^^^^^^

The ``out_subfmt`` argument is similar to ``in_subfmt`` except that it applies
to output formatting.  In the case of multiple matching subformats the first
matching subformat is used.

  >>> Time('2000-01-01 02:03:04', out_subfmt='date').iso
  '2000-01-01'
  >>> Time('2000-01-01 02:03:04', out_subfmt='date_hms').iso
  '2000-01-01 02:03:04.000'
  >>> Time('2000-01-01 02:03:04', out_subfmt='date*').iso
  '2000-01-01 02:03:04.000'

location
^^^^^^^^

This optional parameter specifies the observer location, using an
|EarthLocation| object or a tuple containing any form that can initialize one:
either a tuple with geocentric coordinates (X, Y, Z), or a tuple with geodetic
coordinates (longitude, latitude, height; with height defaulting to zero).
They are used for time scales that are sensitive to observer location
(currently, only TDB, which relies on the ERFA routine ``eraDtdb`` to
determine the time offset between TDB and TT), as well as for sidereal time if
no explicit longitude is given.

  >>> t = Time('2001-03-22 00:01:44.732327132980', scale='utc',
  ...          location=('120d', '40d'))
  >>> t.sidereal_time('apparent', 'greenwich')  # doctest: +FLOAT_CMP
  <Longitude 12.00000000000001 hourangle>
  >>> t.sidereal_time('apparent')  # doctest: +FLOAT_CMP
  <Longitude 20.00000000000001 hourangle>

.. note:: In future versions, we hope to add the possibility to add observatory
          objects and/or names.

Getting the Current Time
^^^^^^^^^^^^^^^^^^^^^^^^

The current time can be determined as a |Time| object using the
`~astropy.time.Time.now` class method::

  >>> nt = Time.now()
  >>> ut = Time(datetime.utcnow(), scale='utc')

The two should be very close to each other.




Using Time objects
-------------------

There are four basic operations available with |Time| objects:

- Get the representation of the time value(s) in a particular `time format`_.
- Get a new time object for the same time value(s) but referenced to a different
  `time scale`_.
- Calculate the `sidereal time`_ corresponding to the time value(s).
- Do time arithmetic involving |Time| and/or |TimeDelta| objects.

Get representation
^^^^^^^^^^^^^^^^^^^

Instants of time can be represented in different ways, for instance as an
ISO-format date string (``'1999-07-23 04:31:00'``) or seconds since 1998.0
(``49091460.0``) or Modified Julian Date (``51382.187451574``).

The representation of a |Time| object in a particular format is available
by getting the object attribute corresponding to the format name.  The list of
available format names is in the `time format`_ section.

  >>> t = Time('2010-01-01 00:00:00', format='iso', scale='utc')
  >>> t.jd        # JD representation of time in current scale (UTC)
  2455197.5
  >>> t.iso       # ISO representation of time in current scale (UTC)
  '2010-01-01 00:00:00.000'
  >>> t.unix      # seconds since 1970.0 (UTC)
  1262304000.0
  >>> t.plot_date # Date value for plotting with matplotlib plot_date()
  733773.0
  >>> t.datetime  # Representation as datetime.datetime object
  datetime.datetime(2010, 1, 1, 0, 0)

Example::

  >>> import matplotlib.pyplot as plt  # doctest: +SKIP
  >>> jyear = np.linspace(2000, 2001, 20)  # doctest: +SKIP
  >>> t = Time(jyear, format='jyear')  # doctest: +SKIP
  >>> plt.plot_date(t.plot_date, jyear)  # doctest: +SKIP
  >>> plt.gcf().autofmt_xdate()  # orient date labels at a slant  # doctest: +SKIP
  >>> plt.draw()  # doctest: +SKIP

Convert time scale
^^^^^^^^^^^^^^^^^^^^

A new |Time| object for the same time value(s) but referenced to a new `time
scale`_ can be created getting the object attribute corresponding to the time
scale name.  The list of available time scale names is in the `time scale`_
section and in the figure below illustrating the network of time scale
transformations.

.. image:: time_scale_conversion.png

Examples::

  >>> t = Time('2010-01-01 00:00:00', format='iso', scale='utc')
  >>> t.tt        # TT scale
  <Time object: scale='tt' format='iso' value=2010-01-01 00:01:06.184>
  >>> t.tai
  <Time object: scale='tai' format='iso' value=2010-01-01 00:00:34.000>

In this process the ``format`` and other object attributes like ``lon``,
``lat``, and ``precision`` are also propagated to the new object.


As noted in the ``Time object basics`` section, a |Time| object is immutable and
the internal time values cannot be altered once the object is created.  The
process of changing the time scale therefore begins by making a copy of the
original object and then converting the internal time values in the copy to the
new time scale.  The new |Time| object is returned by the attribute access.

Caching
^^^^^^^

The computations for transforming to different time scales or formats can be
time-consuming for large arrays.  In order to avoid repeated computations, each
|Time| or |TimeDelta| instance caches such transformations internally::

  >>> t = Time(np.arange(1e6), format='unix', scale='utc')  # doctest: +SKIP

  >>> time x = t.tt  # doctest: +SKIP
  CPU times: user 263 ms, sys: 4.02 ms, total: 267 ms
  Wall time: 267 ms

  >>> time x = t.tt  # doctest: +SKIP
  CPU times: user 28 µs, sys: 9 µs, total: 37 µs
  Wall time: 32.9 µs

Actions such as changing the output precision or sub-format will clear
the cache.  In order to explicitly clear the internal cache do::

  >>> del t.cache  # doctest: +SKIP

  >>> time x = t.tt  # doctest: +SKIP
  CPU times: user 263 ms, sys: 4.02 ms, total: 267 ms
  Wall time: 267 ms

Since these objects are immutable (cannot be changed internally), this should
not normally be required.

Transformation offsets
""""""""""""""""""""""

Time scale transformations that cross one of the orange circles in the image
above require an additional offset time value that is model or
observation-dependent.  See `SOFA Time Scale and Calendar Tools
<http://www.iausofa.org/sofa_ts_c.pdf>`_ for further details.

The two attributes :attr:`~astropy.time.Time.delta_ut1_utc` and
:attr:`~astropy.time.Time.delta_tdb_tt` provide a way to set
these offset times explicitly.  These represent the time scale offsets
UT1 - UTC and TDB - TT, respectively.  As an example::

  >>> t = Time('2010-01-01 00:00:00', format='iso', scale='utc')
  >>> t.delta_ut1_utc = 0.334  # Explicitly set one part of the transformation
  >>> t.ut1.iso    # ISO representation of time in UT1 scale
  '2010-01-01 00:00:00.334'

For the UT1 to UTC offset, one has to interpolate the observed values provided
by the `International Earth Rotation and Reference Systems (IERS) Service
<http://www.iers.org>`_.  Astropy will automatically download and use values
from the IERS which cover times spanning from 1973-Jan-01 through one year into
the future.  In addition the astropy package is bundled with a data table of
values provided in Bulletin B, which cover the period from 1962 to shortly
before an astropy release.

When the :attr:`~astropy.time.Time.delta_ut1_utc` attribute is not set
explicitly then IERS values will be used (initiating a download of a few Mb
file the first time).  For details about how IERS values are used in astropy
time and coordinates, and to understand how to control automatic downloads see
:ref:`utils-iers`.  The example below illustrates converting to the ``UT1``
scale along with the auto-download feature::

  >>> t = Time('2016:001')
  >>> t.ut1  # doctest: +SKIP
  Downloading http://maia.usno.navy.mil/ser7/finals2000A.all
  |==================================================================| 3.0M/3.0M (100.00%)         6s
  <Time object: scale='ut1' format='yday' value=2016:001:00:00:00.082>

.. note:: The :class:`~astropy.utils.iers.IERS_Auto` class contains machinery
    to ensure that the IERS table is kept up to date by auto-downloading the
    latest version as needed.  This means that the IERS table is assured of
    having the state-of-the-art definitive and predictive values for Earth
    rotation.  As a user it is **your responsibility** to understand the
    accuracy of IERS predictions if your science depends on that.  If you
    request ``UT1-UTC`` for times beyond the range of IERS table data then the
    nearest available values will be provided.

In the case of the TDB to TT offset, most users need only provide the ``lon``
and ``lat`` values when creating the |Time| object.  If the
:attr:`~astropy.time.Time.delta_tdb_tt` attribute is not explicitly set then
the ERFA C-library routine ``eraDtdb`` will be used to compute the TDB to TT
offset.  Note that if ``lon`` and ``lat`` are not explicitly initialized,
values of 0.0 degrees for both will be used.

The following code replicates an example in the `SOFA Time Scale and Calendar
Tools <http://www.iausofa.org/sofa_ts_c.pdf>`_ document.  It
does the transform from UTC to all supported time scales (TAI, TCB, TCG, TDB,
TT, UT1, UTC).  This requires an observer location (here, latitude and
longitude).::

  >>> import astropy.units as u
  >>> t = Time('2006-01-15 21:24:37.5', format='iso', scale='utc',
  ...          location=(-155.933222*u.deg, 19.48125*u.deg), precision=6)
  >>> t.utc.iso
  '2006-01-15 21:24:37.500000'
  >>> t.ut1.iso
  '2006-01-15 21:24:37.834078'
  >>> t.tai.iso
  '2006-01-15 21:25:10.500000'
  >>> t.tt.iso
  '2006-01-15 21:25:42.684000'
  >>> t.tcg.iso
  '2006-01-15 21:25:43.322690'
  >>> t.tdb.iso
  '2006-01-15 21:25:42.684373'
  >>> t.tcb.iso
  '2006-01-15 21:25:56.893952'

Sidereal Time
-------------

Apparent or mean sidereal time can be calculated using
:meth:`~astropy.time.Time.sidereal_time`.  The method returns a |Longitude|
with units of hourangle, which by default is for the longitude corresponding to
the location with which the |Time| object is initialized.  Like the scale
transformations, ERFA C-library routines are used under the hood, which support
calculations following different IAU resolutions.  Sample usage::

  >>> t = Time('2006-01-15 21:24:37.5', scale='utc', location=('120d', '45d'))
  >>> t.sidereal_time('mean')  # doctest: +FLOAT_CMP
  <Longitude 13.089521870640212 hourangle>
  >>> t.sidereal_time('apparent')  # doctest: +FLOAT_CMP
  <Longitude 13.089503675087027 hourangle>
  >>> t.sidereal_time('apparent', 'greenwich')  # doctest: +FLOAT_CMP
  <Longitude 5.089503675087027 hourangle>
  >>> t.sidereal_time('apparent', '-90d')  # doctest: +FLOAT_CMP
  <Longitude 23.08950367508703 hourangle>
  >>> t.sidereal_time('apparent', '-90d', 'IAU1994')  # doctest: +FLOAT_CMP
  <Longitude 23.08950365423405 hourangle>

Time Deltas
-----------

Simple time arithmetic is supported using the |TimeDelta| class.  The
following operations are available:

- Create a TimeDelta explicitly by instantiating a class object
- Create a TimeDelta by subtracting two Times
- Add a TimeDelta to a Time object to get a new Time
- Subtract a TimeDelta from a Time object to get a new Time
- Add two TimeDelta objects to get a new TimeDelta
- Negate a TimeDelta or take its absolute value
- Multiply or divide a TimeDelta by a constant or array
- Convert TimeDelta objects to and from time-like Quantities

The |TimeDelta| class is derived from the |Time| class and shares many of its
properties.  One difference is that the time scale has to be one for which one
day is exactly 86400 seconds.  Hence, the scale cannot be UTC.

The available time formats are:

=========  ===================================================
Format            Class
=========  ===================================================
sec        :class:`~astropy.time.TimeDeltaSec`
jd         :class:`~astropy.time.TimeDeltaJD`
=========  ===================================================

Examples
^^^^^^^^^

Use of the |TimeDelta| object is easily illustrated in the few examples below::

  >>> t1 = Time('2010-01-01 00:00:00')
  >>> t2 = Time('2010-02-01 00:00:00')
  >>> dt = t2 - t1  # Difference between two Times
  >>> dt
  <TimeDelta object: scale='tai' format='jd' value=31.0>
  >>> dt.sec
  2678400.0

  >>> from astropy.time import TimeDelta
  >>> dt2 = TimeDelta(50.0, format='sec')
  >>> t3 = t2 + dt2  # Add a TimeDelta to a Time
  >>> t3.iso
  '2010-02-01 00:00:50.000'

  >>> t2 - dt2  # Subtract a TimeDelta from a Time
  <Time object: scale='utc' format='iso' value=2010-01-31 23:59:10.000>

  >>> dt + dt2  # doctest: +FLOAT_CMP
  <TimeDelta object: scale='tai' format='jd' value=31.0005787037>

  >>> import numpy as np
  >>> t1 + dt * np.linspace(0, 1, 5)
  <Time object: scale='utc' format='iso' value=['2010-01-01 00:00:00.000'
  '2010-01-08 18:00:00.000' '2010-01-16 12:00:00.000' '2010-01-24 06:00:00.000'
  '2010-02-01 00:00:00.000']>

Time Scales for Time Deltas
---------------------------

Above, one sees that the difference between two UTC times is a |TimeDelta|
with a scale of TAI.  This is because a UTC time difference cannot be uniquely
defined unless one knows the two times that were differenced (because of leap
seconds, a day does not always have 86400 seconds).  For all other time
scales, the |TimeDelta| inherits the scale of the first |Time| object::

  >>> t1 = Time('2010-01-01 00:00:00', scale='tcg')
  >>> t2 = Time('2011-01-01 00:00:00', scale='tcg')
  >>> dt = t2 - t1
  >>> dt
  <TimeDelta object: scale='tcg' format='jd' value=365.0>

When |TimeDelta| objects are added or subtracted from |Time| objects, scales
are converted appropriately, with the final scale being that of the |Time|
object::

  >>> t2 + dt
  <Time object: scale='tcg' format='iso' value=2012-01-01 00:00:00.000>
  >>> t2.tai
  <Time object: scale='tai' format='iso' value=2010-12-31 23:59:27.068>
  >>> t2.tai + dt
  <Time object: scale='tai' format='iso' value=2011-12-31 23:59:27.046>

|TimeDelta| objects can be converted only to objects with compatible scales,
i.e., scales for which it is not necessary to know the times that were
differenced::

  >>> dt.tt  # doctest: +FLOAT_CMP
  <TimeDelta object: scale='tt' format='jd' value=364.999999746>
  >>> dt.tdb  # doctest: +IGNORE_EXCEPTION_DETAIL
  Traceback (most recent call last):
    ...
  ScaleValueError: Cannot convert TimeDelta with scale 'tcg' to scale 'tdb'

|TimeDelta| objects can also have an undefined scale, in which case it is
assumed that there scale matches that of the other |Time| or |TimeDelta|
object (or is TAI in case of a UTC time)::

  >>> t2.tai + TimeDelta(365., format='jd', scale=None)
  <Time object: scale='tai' format='iso' value=2011-12-31 23:59:27.068>

.. _time-light-travel-time:

Barycentric and Heliocentric Light Travel Time Corrections
------------------------------------------------------------

The arrival times of photons at an observatory are not particularly useful for
accurate timing work, such as eclipse/transit timing of binaries or exoplanets.
This is because the changing location of the observatory causes photons to
arrive early or late. The solution is to calculate the time the photon would
have arrived at a standard location; either the Solar system barycentre or the
heliocentre.

Suppose you observed IP Peg from Greenwich and have a list of times in MJD form, in
the UTC timescale. You then create appropriate |Time| and |SkyCoord| objects and
calculate light travel times to the barycentre as follows::

    >>> from astropy import time, coordinates as coord, units as u
    >>> ip_peg = coord.SkyCoord("23:23:08.55", "+18:24:59.3",
    ...                         unit=(u.hourangle, u.deg), frame='icrs')
    >>> greenwich = coord.EarthLocation.of_site('greenwich')
    >>> times = time.Time([56325.95833333, 56325.978254], format='mjd',
    ...                   scale='utc', location=greenwich)
    >>> ltt_bary = times.light_travel_time(ip_peg)
    >>> ltt_bary # doctest: +FLOAT_CMP
    <TimeDelta object: scale='tdb' format='jd' value=[-0.0037715  -0.00377286]>

If you desire the light travel time to the heliocentre instead then use::

    >>> ltt_helio = times.light_travel_time(ip_peg, 'heliocentric')
    >>> ltt_helio # doctest: +FLOAT_CMP
    <TimeDelta object: scale='tdb' format='jd' value=[-0.00376576 -0.00376712]>

The method returns an |TimeDelta| object, which can be added to
your times to give the arrival time of the photons at the barycentre or
heliocentre.  Here, one should be careful with the timescales used; for more
detailed information about timescales, see :ref:`time-scale`.

The heliocentre is not a fixed point, and therefore the gravity
continually changes at the heliocentre. Thus, the use of a relativistic
timescale like TDB is not particularly appropriate, and, historically,
times corrected to the heliocentre are given in the UTC timescale::

    >>> times_heliocentre = times.utc + ltt_helio

Corrections to the barycentre are more precise than the heliocentre,
because the barycenter is a fixed point where gravity is constant. For
maximum accuracy you want to have your barycentric corrected times in a
timescale that has always ticked at a uniform rate, and ideally one
whose tick rate is related to the rate that a clock would tick at the
barycentre. For this reason, barycentric corrected times normally use
the TDB timescale::

    >>> time_barycentre = times.tdb + ltt_bary

By default, the light travel time is calculated using the position and velocity
of Earth and the Sun from built-in `ERFA <https://github.com/liberfa/erfa>`_ routines,
but one can also use more precise calculations using the JPL ephemerides (which are derived from
dynamical models). An example using the JPL ephemerides is:

.. doctest-requires:: jplephem

    >>> ltt_bary_jpl = times.light_travel_time(ip_peg, ephemeris='jpl') # doctest: +REMOTE_DATA +IGNORE_OUTPUT
    >>> ltt_bary_jpl # doctest: +REMOTE_DATA +FLOAT_CMP
    <TimeDelta object: scale='tdb' format='jd' value=[-0.0037715  -0.00377286]>
    >>> (ltt_bary_jpl - ltt_bary).to(u.ms) # doctest: +REMOTE_DATA +FLOAT_CMP
    <Quantity [ 0.00058527, 0.00058518] ms>

The difference between the builtin ephemerides and the JPL ephemerides is normally
of the order of 1/100th of a millisecond, so the builtin ephemerides should be suitable
for most purposes. For more details about what ephemerides are available,
including the requirements for using JPL ephemerides, see :ref:`astropy-coordinates-solarsystem`.

Interaction with Time-like Quantities
-------------------------------------

Where possible, |Quantity| objects with units of time are treated as TimeDelta
objects with undefined scale (though necessarily with lower precision). They
can also be used as input in constructing |Time| and |TimeDelta| objects, and
|TimeDelta| objects can be converted to |Quantity| objects of arbitrary units
of time.  Usage is most easily illustrated by examples::

  >>> import astropy.units as u
  >>> Time(10.*u.yr, format='gps')   # time-valued quantities can be used for
  ...                                # for formats requiring a time offset
  <Time object: scale='tai' format='gps' value=315576000.0>
  >>> Time(10.*u.yr, 1.*u.s, format='gps')
  <Time object: scale='tai' format='gps' value=315576001.0>
  >>> Time(2000.*u.yr, scale='utc', format='jyear')
  <Time object: scale='utc' format='jyear' value=2000.0>
  >>> Time(2000.*u.yr, scale='utc', format='byear')
  ...                                # but not for Besselian year, which implies
  ...                                # a different time scale
  ...
  Traceback (most recent call last):
    ...
  ValueError: Input values did not match the format class byear

  >>> TimeDelta(10.*u.yr)            # With a quantity, no format is required
  <TimeDelta object: scale='None' format='jd' value=3652.5>

  >>> dt = TimeDelta([10., 20., 30.], format='jd')
  >>> dt.to(u.hr)                    # can convert TimeDelta to a quantity
  <Quantity [ 240., 480., 720.] h>
  >>> dt > 400. * u.hr               # and compare to quantities with units of time
  array([False,  True,  True], dtype=bool)
  >>> dt + 1.*u.hr                   # can also add/subtract such quantities
  <TimeDelta object: scale='None' format='jd' value=[ 10.04166667  20.04166667  30.04166667]>
  >>> Time(50000., format='mjd', scale='utc') + 1.*u.hr  # doctest: +FLOAT_CMP
  <Time object: scale='utc' format='mjd' value=50000.0416667>
  >>> dt * 10.*u.km/u.s              # for multiplication and division with a
  ...                                # Quantity, TimeDelta is converted
  <Quantity [ 100., 200., 300.] d km / s>
  >>> dt * 10.*u.Unit(1)             # unless the Quantity is dimensionless
  <TimeDelta object: scale='None' format='jd' value=[ 100.  200.  300.]>

Writing a Custom Format
-----------------------

Some applications may need a custom |Time| format, and this capability is
available by making a new subclass of the `~astropy.time.TimeFormat` class.
When such a subclass is defined in your code then the format class and
corresponding name is automatically registered in the set of available time
formats.

The key elements of a new format class are illustrated by examining the
code for the ``jd`` format (which is one of the simplest)::

  class TimeJD(TimeFormat):
      """
      Julian Date time format.
      """
      name = 'jd'  # Unique format name

      def set_jds(self, val1, val2):
          """
          Set the internal jd1 and jd2 values from the input val1, val2.
          The input values are expected to conform to this format, as
          validated by self._check_val_type(val1, val2) during __init__.
          """
          self._check_scale(self._scale)  # Validate scale.
          self.jd1, self.jd2 = day_frac(val1, val2)

      @property
      def value(self):
          """
          Return format ``value`` property from internal jd1, jd2
          """
          return self.jd1 + self.jd2

As mentioned above, the ``_check_val_type(self, val1, val2)``
method may need to be overridden to validate the inputs as conforming to the
format specification.  By default this checks for valid float, float array, or
|Quantity| inputs.  In contrast the ``iso`` format class ensures the inputs
meet the ISO format spec for strings.

One special case that is relatively common and easier to implement is a format
that makes a small change to the date format. For instance one could insert ``T``
in the ``yday`` format with the following ``TimeYearDayTimeCustom`` class. Notice how
the ``subfmts`` definition is modified slightly from the standard
`~astropy.time.TimeISO` class from which it inherits::

  >>> from astropy.time import TimeISO
  >>> class TimeYearDayTimeCustom(TimeISO):
  ...    """
  ...    Year, day-of-year and time as "<YYYY>-<DOY>T<HH>:<MM>:<SS.sss...>".
  ...    The day-of-year (DOY) goes from 001 to 365 (366 in leap years).
  ...    For example, 2000-001T00:00:00.000 is midnight on January 1, 2000.
  ...    The allowed subformats are:
  ...    - 'date_hms': date + hours, mins, secs (and optional fractional secs)
  ...    - 'date_hm': date + hours, mins
  ...    - 'date': date
  ...    """
  ...    name = 'yday_custom'  # Unique format name
  ...    subfmts = (('date_hms',
  ...                '%Y-%jT%H:%M:%S',
  ...                '{year:d}-{yday:03d}T{hour:02d}:{min:02d}:{sec:02d}'),
  ...               ('date_hm',
  ...                '%Y-%jT%H:%M',
  ...                '{year:d}-{yday:03d}T{hour:02d}:{min:02d}'),
  ...               ('date',
  ...                '%Y-%j',
  ...                '{year:d}-{yday:03d}'))


  >>> t = Time('2000-01-01')
  >>> t.yday_custom
  '2000-001T00:00:00.000'
  >>> t2 = Time('2016-001T00:00:00')
  >>> t2.iso
  '2016-01-01 00:00:00.000'

Another special case that is relatively common is a
format that represents the time since a particular epoch.  The classic example
is Unix time which is the number of seconds since 1970-01-01 00:00:00 UTC,
not counting leap seconds.  What if we wanted that value but **do** want
to count leap seconds.  This would be done by using the TAI scale instead
of the UTC scale.  In this case we inherit from the
`~astropy.time.TimeFromEpoch` class and define a few class attributes::

  >>> from astropy.time.formats import erfa, TimeFromEpoch
  >>> class TimeUnixLeap(TimeFromEpoch):
  ...    """
  ...    Seconds from 1970-01-01 00:00:00 TAI.  Similar to Unix time
  ...    but this includes leap seconds.
  ...    """
  ...    name = 'unix_leap'
  ...    unit = 1.0 / erfa.DAYSEC  # in days (1 day == 86400 seconds)
  ...    epoch_val = '1970-01-01 00:00:00'
  ...    epoch_val2 = None
  ...    epoch_scale = 'tai'  # Scale for epoch_val class attribute
  ...    epoch_format = 'iso'  # Format for epoch_val class attribute

  >>> t = Time('2000-01-01')
  >>> t.unix_leap
  946684832.0
  >>> t.unix_leap - t.unix
  32.0

Going beyond this will probably require looking at the astropy code for more
guidance, but if you get stuck the astropy developers are more than happy to
help.  If you write a format class that is widely useful then we might want to
include it in the core!


Timezones
---------

When a `~astropy.time.Time` object is constructed from a timezone-aware
`~datetime.datetime`, no timezone information is saved in the
`~astropy.time.Time` object. However, `~astropy.time.Time` objects can be
converted to timezone-aware datetime objects::

  >>> from datetime import datetime
  >>> from astropy.time import Time, TimezoneInfo
  >>> import astropy.units as u
  >>> utc_plus_one_hour = TimezoneInfo(utc_offset=1*u.hour)
  >>> dt_aware = datetime(2000, 1, 1, 0, 0, 0, tzinfo=utc_plus_one_hour)
  >>> t = Time(dt_aware)  # Loses timezone info, converts to UTC
  >>> print(t)            # will return UTC
  1999-12-31 23:00:00
  >>> print(t.to_datetime(timezone=utc_plus_one_hour)) # to timezone-aware datetime
  2000-01-01 00:00:00+01:00

Timezone database packages, like `pytz <http://pythonhosted.org/pytz/>`_
for example, may be more convenient to use to create `~datetime.tzinfo`
objects used to specify timezones rather than the `~astropy.time.TimezoneInfo`
object.

Reference/API
=============

.. automodapi:: astropy.time
   :inherited-members:


Acknowledgments and Licenses
============================

This package makes use of the `ERFA Software
<https://github.com/liberfa/erfa>`_ ANSI C library. The copyright of the ERFA
software belongs to the NumFOCUS Foundation. The library is made available
under the terms of the "BSD-three clauses" license.

The ERFA library is derived, with permission, from the International
Astronomical Union's "Standards of Fundamental Astronomy" library,
available from http://www.iausofa.org.