1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
|
.. include:: references.txt
.. _astropy-time:
****************************************************
Time and Dates (`astropy.time`)
****************************************************
.. |Quantity| replace:: :class:`~astropy.units.Quantity`
.. |Longitude| replace:: :class:`~astropy.coordinates.Longitude`
.. |EarthLocation| replace:: :class:`~astropy.coordinates.EarthLocation`
.. |SkyCoord| replace:: :class:`~astropy.coordinates.SkyCoord`
Introduction
============
The `astropy.time` package provides functionality for manipulating times and
dates. Specific emphasis is placed on supporting time scales (e.g. UTC, TAI,
UT1, TDB) and time representations (e.g. JD, MJD, ISO 8601) that are used in
astronomy and required to calculate, e.g., sidereal times and barycentric
corrections.
It uses Cython to wrap the C language `ERFA`_ time and calendar
routines, using a fast and memory efficient vectorization scheme.
All time manipulations and arithmetic operations are done internally using two
64-bit floats to represent time. Floating point algorithms from [#]_ are used so
that the |Time| object maintains sub-nanosecond precision over times spanning
the age of the universe.
.. [#] `Shewchuk, 1997, Discrete & Computational Geometry 18(3):305-363
<http://www.cs.berkeley.edu/~jrs/papers/robustr.pdf>`_
Getting Started
===============
The basic way to use `astropy.time` is to create a |Time|
object by supplying one or more input time values as well as the `time format`_ and
`time scale`_ of those values. The input time(s) can either be a single scalar like
``"2010-01-01 00:00:00"`` or a list or a `numpy` array of values as shown below.
In general any output values have the same shape (scalar or array) as the input.
>>> from astropy.time import Time
>>> times = ['1999-01-01T00:00:00.123456789', '2010-01-01T00:00:00']
>>> t = Time(times, format='isot', scale='utc')
>>> t
<Time object: scale='utc' format='isot' value=['1999-01-01T00:00:00.123' '2010-01-01T00:00:00.000']>
>>> t[1]
<Time object: scale='utc' format='isot' value=2010-01-01T00:00:00.000>
The ``format`` argument specifies how to interpret the input values,
e.g. ISO or JD or Unix time. The ``scale`` argument specifies the `time scale`_ for the
values, e.g. UTC or TT or UT1. The ``scale`` argument is optional and
defaults to UTC except for `Time from epoch formats`_.
We could have written the above as::
>>> t = Time(times, format='isot')
When the format of the input can be unambiguously determined then the
``format`` argument is not required, so we can simplify even further::
>>> t = Time(times)
Now let's get the representation of these times in the JD and MJD
formats by requesting the corresponding |Time| attributes::
>>> t.jd
array([ 2451179.50000143, 2455197.5 ])
>>> t.mjd
array([ 51179.00000143, 55197. ])
The default representation can be changed by setting the `format` attribute::
>>> t.format = 'fits'
>>> t
<Time object: scale='utc' format='fits' value=['1999-01-01T00:00:00.123(UTC)'
'2010-01-01T00:00:00.000(UTC)']>
>>> t.format = 'isot'
We can also convert to a different time scale, for instance from UTC to
TT. This uses the same attribute mechanism as above but now returns a new
|Time| object::
>>> t2 = t.tt
>>> t2
<Time object: scale='tt' format='isot' value=['1999-01-01T00:01:04.307' '2010-01-01T00:01:06.184']>
>>> t2.jd
array([ 2451179.5007443 , 2455197.50076602])
Note that both the ISO (ISOT) and JD representations of ``t2`` are different
than for ``t`` because they are expressed relative to the TT time scale. Of
course, from the numbers or strings one could not tell; one format in which
this information is kept is the ``fits`` format::
>>> print(t2.fits)
['1999-01-01T00:01:04.307(TT)' '2010-01-01T00:01:06.184(TT)']
Finally, some further examples of what is possible. For details, see
the API documentation below.
>>> dt = t[1] - t[0]
>>> dt # doctest: +FLOAT_CMP
<TimeDelta object: scale='tai' format='jd' value=4018.00002172>
Here, note the conversion of the timescale to TAI. Time differences
can only have scales in which one day is always equal to 86400 seconds.
>>> import numpy as np
>>> t[0] + dt * np.linspace(0.,1.,12)
<Time object: scale='utc' format='isot' value=['1999-01-01T00:00:00.123' '2000-01-01T06:32:43.930'
'2000-12-31T13:05:27.737' '2001-12-31T19:38:11.544'
'2003-01-01T02:10:55.351' '2004-01-01T08:43:39.158'
'2004-12-31T15:16:22.965' '2005-12-31T21:49:06.772'
'2007-01-01T04:21:49.579' '2008-01-01T10:54:33.386'
'2008-12-31T17:27:17.193' '2010-01-01T00:00:00.000']>
>>> t.sidereal_time('apparent', 'greenwich')
<Longitude [ 6.68050179, 6.70281947] hourangle>
Using `astropy.time`
=====================
Time object basics
-------------------
In `astropy.time` a "time" is a single instant of time which is
independent of the way the time is represented (the "format") and the time
"scale" which specifies the offset and scaling relation of the unit of time.
There is no distinction made between a "date" and a "time" since both concepts
(as loosely defined in common usage) are just different representations of a
moment in time.
Once a |Time| object is created it cannot be altered internally. In code lingo
it is "immutable." In particular the common operation of "converting" to a
different `time scale`_ is always performed by returning a copy of the original
|Time| object which has been converted to the new time scale.
.. _time-format:
Time Format
^^^^^^^^^^^
The time format specifies how an instant of time is represented. The currently
available formats are can be found in the ``Time.FORMATS`` dict and
are listed in the table below. Each of these formats is implemented as a class
that derives from the base :class:`~astropy.time.TimeFormat` class.
This class structure can be easily adapted and extended by users for
specialized time formats not supplied in `astropy.time`.
=========== ================================================= ==============================
Format Class Example argument
=========== ================================================= ==============================
byear :class:`~astropy.time.TimeBesselianEpoch` 1950.0
byear_str :class:`~astropy.time.TimeBesselianEpochString` 'B1950.0'
cxcsec :class:`~astropy.time.TimeCxcSec` 63072064.184
datetime :class:`~astropy.time.TimeDatetime` datetime(2000, 1, 2, 12, 0, 0)
decimalyear :class:`~astropy.time.TimeDecimalYear` 2000.45
fits :class:`~astropy.time.TimeFITS` '2000-01-01T00:00:00.000(TAI)'
gps :class:`~astropy.time.TimeGPS` 630720013.0
iso :class:`~astropy.time.TimeISO` '2000-01-01 00:00:00.000'
isot :class:`~astropy.time.TimeISOT` '2000-01-01T00:00:00.000'
jd :class:`~astropy.time.TimeJD` 2451544.5
jyear :class:`~astropy.time.TimeJulianEpoch` 2000.0
jyear_str :class:`~astropy.time.TimeJulianEpochString` 'J2000.0'
mjd :class:`~astropy.time.TimeMJD` 51544.0
plot_date :class:`~astropy.time.TimePlotDate` 730120.0003703703
unix :class:`~astropy.time.TimeUnix` 946684800.0
yday :class:`~astropy.time.TimeYearDayTime` 2000:001:00:00:00.000
=========== ================================================= ==============================
.. note:: The :class:`~astropy.time.TimeFITS` format allows for most
but not all of the the FITS standard [#]_. Not implemented (yet) is
support for a ``LOCAL`` timescale. Furthermore, FITS supports some deprecated
names for timescales; these are translated to the formal names upon
initialization. Furthermore, any specific realization information,
such as ``UT(NIST)`` is stored only as long as the time scale is not changed.
.. [#] `Rots et al. 2015, A&A 574:A36 <http://adsabs.harvard.edu/abs/2015A%26A...574A..36R>`_
Changing format
"""""""""""""""
The default representation can be changed by setting the ``format`` attribute in place::
>>> t = Time('2000-01-02')
>>> t.format = 'jd'
>>> t
<Time object: scale='utc' format='jd' value=2451545.5>
Be aware that when changing format, the current output subformat (see section below)
may not exist in the new format. In this case the subformat will not be
preserved::
>>> t = Time('2000-01-02', format='fits', out_subfmt='longdate')
>>> t.value
'+02000-01-02(UTC)'
>>> t.format = 'iso'
>>> t.out_subfmt
u'*'
>>> t.format = 'fits'
>>> t.value
'2000-01-02T00:00:00.000(UTC)'
Subformat
"""""""""
The time format classes :class:`~astropy.time.TimeISO`,
:class:`~astropy.time.TimeISOT`, :class:`~astropy.time.TimeFITS`, and
:class:`~astropy.time.TimeYearDayTime` support the concept of
subformats. This allows for variations on the basic theme of a format in both
the input string parsing and the output.
The supported subformats are ``date_hms``, ``date_hm``, and ``date``
for all but the :class:`~astropy.time.TimeFITS` format; the latter
does not support ``date_hm`` but does support ``longdate_hms`` and
``longdate`` for years before the year 0 and after the year 10000. The
table below illustrates these subformats for ``iso``, ``fits``, ``yday``
formats:
======== ============ ==============================
Format Subformat Input / output
======== ============ ==============================
``iso`` date_hms 2001-01-02 03:04:05.678
``iso`` date_hm 2001-01-02 03:04
``iso`` date 2001-01-02
``fits`` date_hms 2001-01-02T03:04:05.678(UTC)
``fits`` longdate_hms +02001-01-02T03:04:05.678(UTC)
``fits`` longdate +02001-01-02(UTC)
``yday`` date_hms 2001:032:03:04:05.678
``yday`` date_hm 2001:032:03:04
``yday`` date 2001:032
======== ============ ==============================
Time from epoch formats
"""""""""""""""""""""""
The formats ``cxcsec``, ``gps``, and ``unix`` are a little special in
that they provide a floating point representation of the elapsed
time in seconds since a particular reference date. These formats have
a intrinsic time scale which is used to compute the elapsed seconds
since the reference date.
========== ====== ========================
Format Scale Reference date
========== ====== ========================
``cxcsec`` TT ``1998-01-01 00:00:00``
``unix`` UTC ``1970-01-01 00:00:00``
``gps`` TAI ``1980-01-06 00:00:19``
========== ====== ========================
Unlike the other formats which default to UTC, if no ``scale`` is provided when
initializing a |Time| object then the above intrinsic scale is used.
This is done for computational efficiency.
.. _time-scale:
Time Scale
^^^^^^^^^^
The time scale (or `time standard
<http://en.wikipedia.org/wiki/Time_standard>`_) is "a specification for
measuring time: either the rate at which time passes; or points in time; or
both" [#]_. See also [#]_ and [#]_.
::
>>> Time.SCALES
('tai', 'tcb', 'tcg', 'tdb', 'tt', 'ut1', 'utc')
====== =================================
Scale Description
====== =================================
tai International Atomic Time (TAI)
tcb Barycentric Coordinate Time (TCB)
tcg Geocentric Coordinate Time (TCG)
tdb Barycentric Dynamical Time (TDB)
tt Terrestrial Time (TT)
ut1 Universal Time (UT1)
utc Coordinated Universal Time (UTC)
====== =================================
.. [#] Wikipedia `time standard <http://en.wikipedia.org/wiki/Time_standard>`_ article
.. [#] SOFA Time Scale and Calendar Tools
`(PDF) <http://www.iausofa.org/sofa_ts_c.pdf>`_
.. [#] `<http://www.ucolick.org/~sla/leapsecs/timescales.html>`_
The system of transformation between supported time scales is shown in the
figure below. Further details are provided in the `Convert time scale`_ section.
.. image:: time_scale_conversion.png
Scalar or Array
^^^^^^^^^^^^^^^
A |Time| object can hold either a single time value or an array of time values.
The distinction is made entirely by the form of the input time(s). If a |Time|
object holds a single value then any format outputs will be a single scalar
value, and likewise for arrays. Like other arrays and lists, |Time| objects
holding arrays are subscriptable, returning scalar or array objects as
appropriate::
>>> from astropy.time import Time
>>> t = Time(100.0, format='mjd')
>>> t.jd
2400100.5
>>> t = Time([100.0, 200.0, 300.], format='mjd')
>>> t.jd
array([ 2400100.5, 2400200.5, 2400300.5])
>>> t[:2]
<Time object: scale='utc' format='mjd' value=[ 100. 200.]>
>>> t[2]
<Time object: scale='utc' format='mjd' value=300.0>
>>> t = Time(np.arange(50000., 50003.)[:, np.newaxis],
... np.arange(0., 1., 0.5), format='mjd')
>>> t
<Time object: scale='utc' format='mjd' value=[[ 50000. 50000.5]
[ 50001. 50001.5]
[ 50002. 50002.5]]>
>>> t[0]
<Time object: scale='utc' format='mjd' value=[ 50000. 50000.5]>
.. _astropy-time-shape-methods:
Numpy method analogs
^^^^^^^^^^^^^^^^^^^^
For |Time| instances holding arrays, many of the same methods and attributes
that work on `~numpy.ndarray` instances can be used. E.g., one can reshape
|Time| instances and take specific parts using
:meth:`~astropy.time.Time.reshape`,
:meth:`~astropy.time.Time.ravel`, :meth:`~astropy.time.Time.flatten`,
:attr:`~astropy.time.Time.T`, :meth:`~astropy.time.Time.transpose`,
:meth:`~astropy.time.Time.swapaxes`, :meth:`~astropy.time.Time.diagonal`,
:meth:`~astropy.time.Time.squeeze`, :meth:`~astropy.time.Time.take`::
>>> t.reshape(2, 3)
<Time object: scale='utc' format='mjd' value=[[ 50000. 50000.5 50001. ]
[ 50001.5 50002. 50002.5]]>
>>> t.T
<Time object: scale='utc' format='mjd' value=[[ 50000. 50001. 50002. ]
[ 50000.5 50001.5 50002.5]]>
Note that similarly to the `~numpy.ndarray` methods, all but
:meth:`~astropy.time.Time.flatten` try to use new views of the data,
with the data copied only if that it is impossible (as discussed, e.g., in
the documentation for numpy :func:`~numpy.reshape`).
Some arithmetic methods are supported as well: :meth:`~astropy.time.Time.min`,
:meth:`~astropy.time.Time.max`, :meth:`~astropy.time.Time.ptp`,
:meth:`~astropy.time.Time.sort`, :meth:`~astropy.time.Time.argmin`,
:meth:`~astropy.time.Time.argmax`, and :meth:`~astropy.time.Time.argsort`.
E.g.::
>> t.max()
<Time object: scale='utc' format='mjd' value=50002.5>
>> t.ptp(axis=0)
<TimeDelta object: scale='tai' format='jd' value=[ 2. 2.]>
.. _astropy-time-inferring-input:
Inferring input format
^^^^^^^^^^^^^^^^^^^^^^
The |Time| class initializer will not accept ambiguous inputs,
but it will make automatic inferences in cases where the inputs are
unambiguous. This can apply when the times are supplied as `~datetime.datetime`
objects or strings. In the latter case
it is not required to specify the format because the available
string formats have no overlap. However, if the format is known in advance
the string parsing will be faster if the format is provided.
::
>>> from datetime import datetime
>>> t = Time(datetime(2010, 1, 2, 1, 2, 3))
>>> t.format
'datetime'
>>> t = Time('2010-01-02 01:02:03')
>>> t.format
'iso'
Internal representation
^^^^^^^^^^^^^^^^^^^^^^^
The |Time| object maintains an internal representation of time as a pair of
double precision numbers expressing Julian days. The sum of the two numbers is
the Julian Date for that time relative to the given `time scale`_. Users
requiring no better than microsecond precision over human time scales (~100
years) can safely ignore the internal representation details and skip this section.
This representation is driven by the underlying ERFA C-library implementation.
The ERFA routines take care throughout to maintain overall precision of the
double pair. The user is free to choose the way in which total JD is
provided, though internally one part contains integer days and the
other the fraction of the day, as this ensures optimal accuracy for
all conversions. The internal JD pair is available via the ``jd1``
and ``jd2`` attributes::
>>> t = Time('2010-01-01 00:00:00', scale='utc')
>>> t.jd1, t.jd2
(2455197.5, 0.0)
>>> t2 = t.tai
>>> t2.jd1, t2.jd2 # doctest: +FLOAT_CMP
(2455197.5, 0.0003935185185185185)
Creating a Time object
----------------------
The allowed |Time| arguments to create a time object are listed below:
**val** : numpy ndarray, list, str, or number
Data to initialize table.
**val2** : numpy ndarray, list, str, or number; optional
Data to initialize table.
**format** : str, optional
Format of input value(s)
**scale** : str, optional
Time scale of input value(s)
**precision** : int between 0 and 9 inclusive
Decimal precision when outputting seconds as floating point
**in_subfmt** : str
Unix glob to select subformats for parsing string input times
**out_subfmt** : str
Unix glob to select subformats for outputting string times
**location** : |EarthLocation| or tuple, optional
If a tuple, 3 |Quantity| items with length units for geocentric coordinates,
or a longitude, latitude, and optional height for geodetic coordinates.
Can be a single location, or one for each input time.
val
^^^
The ``val`` argument specifies the input time or times and
can be a single string or number, or it can be a Python list or `numpy` array
of strings or numbers. To initialize a |Time| object based on a specified time,
it *must* be present. If ``val`` is absent (or `None`), the |Time| object will
be created for the time corresponding to the instant the object is created.
In most situations one also needs to specify the `time scale`_ via the
``scale`` argument. The |Time| class will never guess the `time scale`_,
so a simple example would be::
>>> t1 = Time(50100.0, scale='tt', format='mjd')
>>> t2 = Time('2010-01-01 00:00:00', scale='utc')
It is possible to create a new |Time| object from one or more existing time
objects. In this case the format and scale will be inferred from the
first object unless explicitly specified.
::
>>> Time([t1, t2])
<Time object: scale='tt' format='mjd' value=[ 50100. 55197.00076602]>
val2
^^^^
The ``val2`` argument is available for specialized situations where extremely
high precision is required. Recall that the internal representation of time
within `astropy.time` is two double-precision numbers that when summed give
the Julian date. If provided the ``val2`` argument is used in combination with
``val`` to set the second the internal time values. The exact interpretation of
``val2`` is determined by the input format class. As of this release all
string-valued formats ignore ``val2`` and all numeric inputs effectively add
the two values in a way that maintains the highest precision. Example::
>>> t = Time(100.0, 0.000001, format='mjd', scale='tt')
>>> t.jd, t.jd1, t.jd2 # doctest: +FLOAT_CMP
(2400100.500001, 2400100.5, 1e-06)
format
^^^^^^
The `format` argument sets the time `time format`_, and as mentioned it is
required unless the format can be unambiguously determined from the input times.
scale
^^^^^
The ``scale`` argument sets the `time scale`_ and is required except for time
formats such as ``plot_date`` (:class:`~astropy.time.TimePlotDate`) and ``unix``
(:class:`~astropy.time.TimeUnix`). These formats represent the duration
in SI seconds since a fixed instant in time which is independent of time scale.
precision
^^^^^^^^^^
The ``precision`` setting affects string formats when outputting a value that
includes seconds. It must be an integer between 0 and 9. There is no effect
when inputting time values from strings. The default precision is 3. Note
that the limit of 9 digits is driven by the way that ERFA handles fractional
seconds. In practice this should should not be an issue. ::
>>> t = Time('B1950.0', scale='utc', precision=3)
>>> t.byear_str
'B1950.000'
>>> t.precision = 0
>>> t.byear_str
'B1950'
in_subfmt
^^^^^^^^^
The ``in_subfmt`` argument provides a mechanism to select one or more
`subformat`_ values from the available subformats for string input. Multiple
allowed subformats can be selected using Unix-style wildcard characters, in
particular ``*`` and ``?``, as documented in the Python `fnmatch
<http://docs.python.org/library/fnmatch.html>`_ module.
The default value for ``in_subfmt`` is ``*`` which matches any available
subformat. This allows for convenient input of values with unknown or
heterogeneous subformat::
>>> Time(['2000:001', '2000:002:03:04', '2001:003:04:05:06.789'])
<Time object: scale='utc' format='yday'
value=['2000:001:00:00:00.000' '2000:002:03:04:00.000' '2001:003:04:05:06.789']>
One can explicitly specify ``in_subfmt`` in order to strictly require a
certain subformat::
>>> t = Time('2000:002:03:04', in_subfmt='date_hm')
>>> t = Time('2000:002', in_subfmt='date_hm') # doctest: +SKIP
Traceback (most recent call last):
...
ValueError: Input values did not match any of the formats where the
format keyword is optional ['astropy_time', 'datetime',
'byear_str', 'iso', 'isot', 'jyear_str', 'yday']
out_subfmt
^^^^^^^^^^
The ``out_subfmt`` argument is similar to ``in_subfmt`` except that it applies
to output formatting. In the case of multiple matching subformats the first
matching subformat is used.
>>> Time('2000-01-01 02:03:04', out_subfmt='date').iso
'2000-01-01'
>>> Time('2000-01-01 02:03:04', out_subfmt='date_hms').iso
'2000-01-01 02:03:04.000'
>>> Time('2000-01-01 02:03:04', out_subfmt='date*').iso
'2000-01-01 02:03:04.000'
location
^^^^^^^^
This optional parameter specifies the observer location, using an
|EarthLocation| object or a tuple containing any form that can initialize one:
either a tuple with geocentric coordinates (X, Y, Z), or a tuple with geodetic
coordinates (longitude, latitude, height; with height defaulting to zero).
They are used for time scales that are sensitive to observer location
(currently, only TDB, which relies on the ERFA routine ``eraDtdb`` to
determine the time offset between TDB and TT), as well as for sidereal time if
no explicit longitude is given.
>>> t = Time('2001-03-22 00:01:44.732327132980', scale='utc',
... location=('120d', '40d'))
>>> t.sidereal_time('apparent', 'greenwich') # doctest: +FLOAT_CMP
<Longitude 12.00000000000001 hourangle>
>>> t.sidereal_time('apparent') # doctest: +FLOAT_CMP
<Longitude 20.00000000000001 hourangle>
.. note:: In future versions, we hope to add the possibility to add observatory
objects and/or names.
Getting the Current Time
^^^^^^^^^^^^^^^^^^^^^^^^
The current time can be determined as a |Time| object using the
`~astropy.time.Time.now` class method::
>>> nt = Time.now()
>>> ut = Time(datetime.utcnow(), scale='utc')
The two should be very close to each other.
Using Time objects
-------------------
There are four basic operations available with |Time| objects:
- Get the representation of the time value(s) in a particular `time format`_.
- Get a new time object for the same time value(s) but referenced to a different
`time scale`_.
- Calculate the `sidereal time`_ corresponding to the time value(s).
- Do time arithmetic involving |Time| and/or |TimeDelta| objects.
Get representation
^^^^^^^^^^^^^^^^^^^
Instants of time can be represented in different ways, for instance as an
ISO-format date string (``'1999-07-23 04:31:00'``) or seconds since 1998.0
(``49091460.0``) or Modified Julian Date (``51382.187451574``).
The representation of a |Time| object in a particular format is available
by getting the object attribute corresponding to the format name. The list of
available format names is in the `time format`_ section.
>>> t = Time('2010-01-01 00:00:00', format='iso', scale='utc')
>>> t.jd # JD representation of time in current scale (UTC)
2455197.5
>>> t.iso # ISO representation of time in current scale (UTC)
'2010-01-01 00:00:00.000'
>>> t.unix # seconds since 1970.0 (UTC)
1262304000.0
>>> t.plot_date # Date value for plotting with matplotlib plot_date()
733773.0
>>> t.datetime # Representation as datetime.datetime object
datetime.datetime(2010, 1, 1, 0, 0)
Example::
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> jyear = np.linspace(2000, 2001, 20) # doctest: +SKIP
>>> t = Time(jyear, format='jyear') # doctest: +SKIP
>>> plt.plot_date(t.plot_date, jyear) # doctest: +SKIP
>>> plt.gcf().autofmt_xdate() # orient date labels at a slant # doctest: +SKIP
>>> plt.draw() # doctest: +SKIP
Convert time scale
^^^^^^^^^^^^^^^^^^^^
A new |Time| object for the same time value(s) but referenced to a new `time
scale`_ can be created getting the object attribute corresponding to the time
scale name. The list of available time scale names is in the `time scale`_
section and in the figure below illustrating the network of time scale
transformations.
.. image:: time_scale_conversion.png
Examples::
>>> t = Time('2010-01-01 00:00:00', format='iso', scale='utc')
>>> t.tt # TT scale
<Time object: scale='tt' format='iso' value=2010-01-01 00:01:06.184>
>>> t.tai
<Time object: scale='tai' format='iso' value=2010-01-01 00:00:34.000>
In this process the ``format`` and other object attributes like ``lon``,
``lat``, and ``precision`` are also propagated to the new object.
As noted in the ``Time object basics`` section, a |Time| object is immutable and
the internal time values cannot be altered once the object is created. The
process of changing the time scale therefore begins by making a copy of the
original object and then converting the internal time values in the copy to the
new time scale. The new |Time| object is returned by the attribute access.
Caching
^^^^^^^
The computations for transforming to different time scales or formats can be
time-consuming for large arrays. In order to avoid repeated computations, each
|Time| or |TimeDelta| instance caches such transformations internally::
>>> t = Time(np.arange(1e6), format='unix', scale='utc') # doctest: +SKIP
>>> time x = t.tt # doctest: +SKIP
CPU times: user 263 ms, sys: 4.02 ms, total: 267 ms
Wall time: 267 ms
>>> time x = t.tt # doctest: +SKIP
CPU times: user 28 µs, sys: 9 µs, total: 37 µs
Wall time: 32.9 µs
Actions such as changing the output precision or sub-format will clear
the cache. In order to explicitly clear the internal cache do::
>>> del t.cache # doctest: +SKIP
>>> time x = t.tt # doctest: +SKIP
CPU times: user 263 ms, sys: 4.02 ms, total: 267 ms
Wall time: 267 ms
Since these objects are immutable (cannot be changed internally), this should
not normally be required.
Transformation offsets
""""""""""""""""""""""
Time scale transformations that cross one of the orange circles in the image
above require an additional offset time value that is model or
observation-dependent. See `SOFA Time Scale and Calendar Tools
<http://www.iausofa.org/sofa_ts_c.pdf>`_ for further details.
The two attributes :attr:`~astropy.time.Time.delta_ut1_utc` and
:attr:`~astropy.time.Time.delta_tdb_tt` provide a way to set
these offset times explicitly. These represent the time scale offsets
UT1 - UTC and TDB - TT, respectively. As an example::
>>> t = Time('2010-01-01 00:00:00', format='iso', scale='utc')
>>> t.delta_ut1_utc = 0.334 # Explicitly set one part of the transformation
>>> t.ut1.iso # ISO representation of time in UT1 scale
'2010-01-01 00:00:00.334'
For the UT1 to UTC offset, one has to interpolate the observed values provided
by the `International Earth Rotation and Reference Systems (IERS) Service
<http://www.iers.org>`_. Astropy will automatically download and use values
from the IERS which cover times spanning from 1973-Jan-01 through one year into
the future. In addition the astropy package is bundled with a data table of
values provided in Bulletin B, which cover the period from 1962 to shortly
before an astropy release.
When the :attr:`~astropy.time.Time.delta_ut1_utc` attribute is not set
explicitly then IERS values will be used (initiating a download of a few Mb
file the first time). For details about how IERS values are used in astropy
time and coordinates, and to understand how to control automatic downloads see
:ref:`utils-iers`. The example below illustrates converting to the ``UT1``
scale along with the auto-download feature::
>>> t = Time('2016:001')
>>> t.ut1 # doctest: +SKIP
Downloading http://maia.usno.navy.mil/ser7/finals2000A.all
|==================================================================| 3.0M/3.0M (100.00%) 6s
<Time object: scale='ut1' format='yday' value=2016:001:00:00:00.082>
.. note:: The :class:`~astropy.utils.iers.IERS_Auto` class contains machinery
to ensure that the IERS table is kept up to date by auto-downloading the
latest version as needed. This means that the IERS table is assured of
having the state-of-the-art definitive and predictive values for Earth
rotation. As a user it is **your responsibility** to understand the
accuracy of IERS predictions if your science depends on that. If you
request ``UT1-UTC`` for times beyond the range of IERS table data then the
nearest available values will be provided.
In the case of the TDB to TT offset, most users need only provide the ``lon``
and ``lat`` values when creating the |Time| object. If the
:attr:`~astropy.time.Time.delta_tdb_tt` attribute is not explicitly set then
the ERFA C-library routine ``eraDtdb`` will be used to compute the TDB to TT
offset. Note that if ``lon`` and ``lat`` are not explicitly initialized,
values of 0.0 degrees for both will be used.
The following code replicates an example in the `SOFA Time Scale and Calendar
Tools <http://www.iausofa.org/sofa_ts_c.pdf>`_ document. It
does the transform from UTC to all supported time scales (TAI, TCB, TCG, TDB,
TT, UT1, UTC). This requires an observer location (here, latitude and
longitude).::
>>> import astropy.units as u
>>> t = Time('2006-01-15 21:24:37.5', format='iso', scale='utc',
... location=(-155.933222*u.deg, 19.48125*u.deg), precision=6)
>>> t.utc.iso
'2006-01-15 21:24:37.500000'
>>> t.ut1.iso
'2006-01-15 21:24:37.834078'
>>> t.tai.iso
'2006-01-15 21:25:10.500000'
>>> t.tt.iso
'2006-01-15 21:25:42.684000'
>>> t.tcg.iso
'2006-01-15 21:25:43.322690'
>>> t.tdb.iso
'2006-01-15 21:25:42.684373'
>>> t.tcb.iso
'2006-01-15 21:25:56.893952'
Sidereal Time
-------------
Apparent or mean sidereal time can be calculated using
:meth:`~astropy.time.Time.sidereal_time`. The method returns a |Longitude|
with units of hourangle, which by default is for the longitude corresponding to
the location with which the |Time| object is initialized. Like the scale
transformations, ERFA C-library routines are used under the hood, which support
calculations following different IAU resolutions. Sample usage::
>>> t = Time('2006-01-15 21:24:37.5', scale='utc', location=('120d', '45d'))
>>> t.sidereal_time('mean') # doctest: +FLOAT_CMP
<Longitude 13.089521870640212 hourangle>
>>> t.sidereal_time('apparent') # doctest: +FLOAT_CMP
<Longitude 13.089503675087027 hourangle>
>>> t.sidereal_time('apparent', 'greenwich') # doctest: +FLOAT_CMP
<Longitude 5.089503675087027 hourangle>
>>> t.sidereal_time('apparent', '-90d') # doctest: +FLOAT_CMP
<Longitude 23.08950367508703 hourangle>
>>> t.sidereal_time('apparent', '-90d', 'IAU1994') # doctest: +FLOAT_CMP
<Longitude 23.08950365423405 hourangle>
Time Deltas
-----------
Simple time arithmetic is supported using the |TimeDelta| class. The
following operations are available:
- Create a TimeDelta explicitly by instantiating a class object
- Create a TimeDelta by subtracting two Times
- Add a TimeDelta to a Time object to get a new Time
- Subtract a TimeDelta from a Time object to get a new Time
- Add two TimeDelta objects to get a new TimeDelta
- Negate a TimeDelta or take its absolute value
- Multiply or divide a TimeDelta by a constant or array
- Convert TimeDelta objects to and from time-like Quantities
The |TimeDelta| class is derived from the |Time| class and shares many of its
properties. One difference is that the time scale has to be one for which one
day is exactly 86400 seconds. Hence, the scale cannot be UTC.
The available time formats are:
========= ===================================================
Format Class
========= ===================================================
sec :class:`~astropy.time.TimeDeltaSec`
jd :class:`~astropy.time.TimeDeltaJD`
========= ===================================================
Examples
^^^^^^^^^
Use of the |TimeDelta| object is easily illustrated in the few examples below::
>>> t1 = Time('2010-01-01 00:00:00')
>>> t2 = Time('2010-02-01 00:00:00')
>>> dt = t2 - t1 # Difference between two Times
>>> dt
<TimeDelta object: scale='tai' format='jd' value=31.0>
>>> dt.sec
2678400.0
>>> from astropy.time import TimeDelta
>>> dt2 = TimeDelta(50.0, format='sec')
>>> t3 = t2 + dt2 # Add a TimeDelta to a Time
>>> t3.iso
'2010-02-01 00:00:50.000'
>>> t2 - dt2 # Subtract a TimeDelta from a Time
<Time object: scale='utc' format='iso' value=2010-01-31 23:59:10.000>
>>> dt + dt2 # doctest: +FLOAT_CMP
<TimeDelta object: scale='tai' format='jd' value=31.0005787037>
>>> import numpy as np
>>> t1 + dt * np.linspace(0, 1, 5)
<Time object: scale='utc' format='iso' value=['2010-01-01 00:00:00.000'
'2010-01-08 18:00:00.000' '2010-01-16 12:00:00.000' '2010-01-24 06:00:00.000'
'2010-02-01 00:00:00.000']>
Time Scales for Time Deltas
---------------------------
Above, one sees that the difference between two UTC times is a |TimeDelta|
with a scale of TAI. This is because a UTC time difference cannot be uniquely
defined unless one knows the two times that were differenced (because of leap
seconds, a day does not always have 86400 seconds). For all other time
scales, the |TimeDelta| inherits the scale of the first |Time| object::
>>> t1 = Time('2010-01-01 00:00:00', scale='tcg')
>>> t2 = Time('2011-01-01 00:00:00', scale='tcg')
>>> dt = t2 - t1
>>> dt
<TimeDelta object: scale='tcg' format='jd' value=365.0>
When |TimeDelta| objects are added or subtracted from |Time| objects, scales
are converted appropriately, with the final scale being that of the |Time|
object::
>>> t2 + dt
<Time object: scale='tcg' format='iso' value=2012-01-01 00:00:00.000>
>>> t2.tai
<Time object: scale='tai' format='iso' value=2010-12-31 23:59:27.068>
>>> t2.tai + dt
<Time object: scale='tai' format='iso' value=2011-12-31 23:59:27.046>
|TimeDelta| objects can be converted only to objects with compatible scales,
i.e., scales for which it is not necessary to know the times that were
differenced::
>>> dt.tt # doctest: +FLOAT_CMP
<TimeDelta object: scale='tt' format='jd' value=364.999999746>
>>> dt.tdb # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ScaleValueError: Cannot convert TimeDelta with scale 'tcg' to scale 'tdb'
|TimeDelta| objects can also have an undefined scale, in which case it is
assumed that there scale matches that of the other |Time| or |TimeDelta|
object (or is TAI in case of a UTC time)::
>>> t2.tai + TimeDelta(365., format='jd', scale=None)
<Time object: scale='tai' format='iso' value=2011-12-31 23:59:27.068>
.. _time-light-travel-time:
Barycentric and Heliocentric Light Travel Time Corrections
------------------------------------------------------------
The arrival times of photons at an observatory are not particularly useful for
accurate timing work, such as eclipse/transit timing of binaries or exoplanets.
This is because the changing location of the observatory causes photons to
arrive early or late. The solution is to calculate the time the photon would
have arrived at a standard location; either the Solar system barycentre or the
heliocentre.
Suppose you observed IP Peg from Greenwich and have a list of times in MJD form, in
the UTC timescale. You then create appropriate |Time| and |SkyCoord| objects and
calculate light travel times to the barycentre as follows::
>>> from astropy import time, coordinates as coord, units as u
>>> ip_peg = coord.SkyCoord("23:23:08.55", "+18:24:59.3",
... unit=(u.hourangle, u.deg), frame='icrs')
>>> greenwich = coord.EarthLocation.of_site('greenwich')
>>> times = time.Time([56325.95833333, 56325.978254], format='mjd',
... scale='utc', location=greenwich)
>>> ltt_bary = times.light_travel_time(ip_peg)
>>> ltt_bary # doctest: +FLOAT_CMP
<TimeDelta object: scale='tdb' format='jd' value=[-0.0037715 -0.00377286]>
If you desire the light travel time to the heliocentre instead then use::
>>> ltt_helio = times.light_travel_time(ip_peg, 'heliocentric')
>>> ltt_helio # doctest: +FLOAT_CMP
<TimeDelta object: scale='tdb' format='jd' value=[-0.00376576 -0.00376712]>
The method returns an |TimeDelta| object, which can be added to
your times to give the arrival time of the photons at the barycentre or
heliocentre. Here, one should be careful with the timescales used; for more
detailed information about timescales, see :ref:`time-scale`.
The heliocentre is not a fixed point, and therefore the gravity
continually changes at the heliocentre. Thus, the use of a relativistic
timescale like TDB is not particularly appropriate, and, historically,
times corrected to the heliocentre are given in the UTC timescale::
>>> times_heliocentre = times.utc + ltt_helio
Corrections to the barycentre are more precise than the heliocentre,
because the barycenter is a fixed point where gravity is constant. For
maximum accuracy you want to have your barycentric corrected times in a
timescale that has always ticked at a uniform rate, and ideally one
whose tick rate is related to the rate that a clock would tick at the
barycentre. For this reason, barycentric corrected times normally use
the TDB timescale::
>>> time_barycentre = times.tdb + ltt_bary
By default, the light travel time is calculated using the position and velocity
of Earth and the Sun from built-in `ERFA <https://github.com/liberfa/erfa>`_ routines,
but one can also use more precise calculations using the JPL ephemerides (which are derived from
dynamical models). An example using the JPL ephemerides is:
.. doctest-requires:: jplephem
>>> ltt_bary_jpl = times.light_travel_time(ip_peg, ephemeris='jpl') # doctest: +REMOTE_DATA +IGNORE_OUTPUT
>>> ltt_bary_jpl # doctest: +REMOTE_DATA +FLOAT_CMP
<TimeDelta object: scale='tdb' format='jd' value=[-0.0037715 -0.00377286]>
>>> (ltt_bary_jpl - ltt_bary).to(u.ms) # doctest: +REMOTE_DATA +FLOAT_CMP
<Quantity [ 0.00058527, 0.00058518] ms>
The difference between the builtin ephemerides and the JPL ephemerides is normally
of the order of 1/100th of a millisecond, so the builtin ephemerides should be suitable
for most purposes. For more details about what ephemerides are available,
including the requirements for using JPL ephemerides, see :ref:`astropy-coordinates-solarsystem`.
Interaction with Time-like Quantities
-------------------------------------
Where possible, |Quantity| objects with units of time are treated as TimeDelta
objects with undefined scale (though necessarily with lower precision). They
can also be used as input in constructing |Time| and |TimeDelta| objects, and
|TimeDelta| objects can be converted to |Quantity| objects of arbitrary units
of time. Usage is most easily illustrated by examples::
>>> import astropy.units as u
>>> Time(10.*u.yr, format='gps') # time-valued quantities can be used for
... # for formats requiring a time offset
<Time object: scale='tai' format='gps' value=315576000.0>
>>> Time(10.*u.yr, 1.*u.s, format='gps')
<Time object: scale='tai' format='gps' value=315576001.0>
>>> Time(2000.*u.yr, scale='utc', format='jyear')
<Time object: scale='utc' format='jyear' value=2000.0>
>>> Time(2000.*u.yr, scale='utc', format='byear')
... # but not for Besselian year, which implies
... # a different time scale
...
Traceback (most recent call last):
...
ValueError: Input values did not match the format class byear
>>> TimeDelta(10.*u.yr) # With a quantity, no format is required
<TimeDelta object: scale='None' format='jd' value=3652.5>
>>> dt = TimeDelta([10., 20., 30.], format='jd')
>>> dt.to(u.hr) # can convert TimeDelta to a quantity
<Quantity [ 240., 480., 720.] h>
>>> dt > 400. * u.hr # and compare to quantities with units of time
array([False, True, True], dtype=bool)
>>> dt + 1.*u.hr # can also add/subtract such quantities
<TimeDelta object: scale='None' format='jd' value=[ 10.04166667 20.04166667 30.04166667]>
>>> Time(50000., format='mjd', scale='utc') + 1.*u.hr # doctest: +FLOAT_CMP
<Time object: scale='utc' format='mjd' value=50000.0416667>
>>> dt * 10.*u.km/u.s # for multiplication and division with a
... # Quantity, TimeDelta is converted
<Quantity [ 100., 200., 300.] d km / s>
>>> dt * 10.*u.Unit(1) # unless the Quantity is dimensionless
<TimeDelta object: scale='None' format='jd' value=[ 100. 200. 300.]>
Writing a Custom Format
-----------------------
Some applications may need a custom |Time| format, and this capability is
available by making a new subclass of the `~astropy.time.TimeFormat` class.
When such a subclass is defined in your code then the format class and
corresponding name is automatically registered in the set of available time
formats.
The key elements of a new format class are illustrated by examining the
code for the ``jd`` format (which is one of the simplest)::
class TimeJD(TimeFormat):
"""
Julian Date time format.
"""
name = 'jd' # Unique format name
def set_jds(self, val1, val2):
"""
Set the internal jd1 and jd2 values from the input val1, val2.
The input values are expected to conform to this format, as
validated by self._check_val_type(val1, val2) during __init__.
"""
self._check_scale(self._scale) # Validate scale.
self.jd1, self.jd2 = day_frac(val1, val2)
@property
def value(self):
"""
Return format ``value`` property from internal jd1, jd2
"""
return self.jd1 + self.jd2
As mentioned above, the ``_check_val_type(self, val1, val2)``
method may need to be overridden to validate the inputs as conforming to the
format specification. By default this checks for valid float, float array, or
|Quantity| inputs. In contrast the ``iso`` format class ensures the inputs
meet the ISO format spec for strings.
One special case that is relatively common and easier to implement is a format
that makes a small change to the date format. For instance one could insert ``T``
in the ``yday`` format with the following ``TimeYearDayTimeCustom`` class. Notice how
the ``subfmts`` definition is modified slightly from the standard
`~astropy.time.TimeISO` class from which it inherits::
>>> from astropy.time import TimeISO
>>> class TimeYearDayTimeCustom(TimeISO):
... """
... Year, day-of-year and time as "<YYYY>-<DOY>T<HH>:<MM>:<SS.sss...>".
... The day-of-year (DOY) goes from 001 to 365 (366 in leap years).
... For example, 2000-001T00:00:00.000 is midnight on January 1, 2000.
... The allowed subformats are:
... - 'date_hms': date + hours, mins, secs (and optional fractional secs)
... - 'date_hm': date + hours, mins
... - 'date': date
... """
... name = 'yday_custom' # Unique format name
... subfmts = (('date_hms',
... '%Y-%jT%H:%M:%S',
... '{year:d}-{yday:03d}T{hour:02d}:{min:02d}:{sec:02d}'),
... ('date_hm',
... '%Y-%jT%H:%M',
... '{year:d}-{yday:03d}T{hour:02d}:{min:02d}'),
... ('date',
... '%Y-%j',
... '{year:d}-{yday:03d}'))
>>> t = Time('2000-01-01')
>>> t.yday_custom
'2000-001T00:00:00.000'
>>> t2 = Time('2016-001T00:00:00')
>>> t2.iso
'2016-01-01 00:00:00.000'
Another special case that is relatively common is a
format that represents the time since a particular epoch. The classic example
is Unix time which is the number of seconds since 1970-01-01 00:00:00 UTC,
not counting leap seconds. What if we wanted that value but **do** want
to count leap seconds. This would be done by using the TAI scale instead
of the UTC scale. In this case we inherit from the
`~astropy.time.TimeFromEpoch` class and define a few class attributes::
>>> from astropy.time.formats import erfa, TimeFromEpoch
>>> class TimeUnixLeap(TimeFromEpoch):
... """
... Seconds from 1970-01-01 00:00:00 TAI. Similar to Unix time
... but this includes leap seconds.
... """
... name = 'unix_leap'
... unit = 1.0 / erfa.DAYSEC # in days (1 day == 86400 seconds)
... epoch_val = '1970-01-01 00:00:00'
... epoch_val2 = None
... epoch_scale = 'tai' # Scale for epoch_val class attribute
... epoch_format = 'iso' # Format for epoch_val class attribute
>>> t = Time('2000-01-01')
>>> t.unix_leap
946684832.0
>>> t.unix_leap - t.unix
32.0
Going beyond this will probably require looking at the astropy code for more
guidance, but if you get stuck the astropy developers are more than happy to
help. If you write a format class that is widely useful then we might want to
include it in the core!
Timezones
---------
When a `~astropy.time.Time` object is constructed from a timezone-aware
`~datetime.datetime`, no timezone information is saved in the
`~astropy.time.Time` object. However, `~astropy.time.Time` objects can be
converted to timezone-aware datetime objects::
>>> from datetime import datetime
>>> from astropy.time import Time, TimezoneInfo
>>> import astropy.units as u
>>> utc_plus_one_hour = TimezoneInfo(utc_offset=1*u.hour)
>>> dt_aware = datetime(2000, 1, 1, 0, 0, 0, tzinfo=utc_plus_one_hour)
>>> t = Time(dt_aware) # Loses timezone info, converts to UTC
>>> print(t) # will return UTC
1999-12-31 23:00:00
>>> print(t.to_datetime(timezone=utc_plus_one_hour)) # to timezone-aware datetime
2000-01-01 00:00:00+01:00
Timezone database packages, like `pytz <http://pythonhosted.org/pytz/>`_
for example, may be more convenient to use to create `~datetime.tzinfo`
objects used to specify timezones rather than the `~astropy.time.TimezoneInfo`
object.
Reference/API
=============
.. automodapi:: astropy.time
:inherited-members:
Acknowledgments and Licenses
============================
This package makes use of the `ERFA Software
<https://github.com/liberfa/erfa>`_ ANSI C library. The copyright of the ERFA
software belongs to the NumFOCUS Foundation. The library is made available
under the terms of the "BSD-three clauses" license.
The ERFA library is derived, with permission, from the International
Astronomical Union's "Standards of Fundamental Astronomy" library,
available from http://www.iausofa.org.
|