File: quantity.rst

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (423 lines) | stat: -rw-r--r-- 14,005 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
.. _quantity:

Quantity
========

.. |quantity| replace:: :class:`~astropy.units.Quantity`

The |quantity| object is meant to represent a value that has some unit
associated with the number.

Creating Quantity instances
---------------------------

|quantity| objects are created through multiplication with
:class:`~astropy.units.Unit` objects. For example, to create a |quantity|
to represent 15 m/s:

    >>> import astropy.units as u
    >>> 15 * u.m / u.s
    <Quantity 15.0 m / s>

This extends as expected to division by a unit, or using Numpy arrays or Python
sequences:

    >>> 1.25 / u.s
    <Quantity 1.25 1 / s>
    >>> [1, 2, 3] * u.m
    <Quantity [ 1., 2., 3.] m>
    >>> import numpy as np
    >>> np.array([1, 2, 3]) * u.m
    <Quantity [ 1., 2., 3.] m>

You can also create instances using the |quantity| constructor directly, by
specifying a value and unit:

    >>> u.Quantity(15, u.m / u.s)
    <Quantity 15.0 m / s>

The constructor gives a few more options.  In particular, it allows one to
merge sequences of |quantity| objects (as long as all of their units are
equivalent), and to parse simple strings (which may help, e.g., to parse
configuration files, etc.):    

    >>> qlst = [60 * u.s, 1 * u.min]
    >>> u.Quantity(qlst, u.minute)
    <Quantity [ 1.,  1.] min>
    >>> u.Quantity('15 m/s')
    <Quantity 15.0 m / s>

Finally, the current unit and value can be accessed via the
`~astropy.units.quantity.Quantity.unit` and
`~astropy.units.quantity.Quantity.value` attributes:

    >>> q = 2.5 * u.m / u.s
    >>> q.unit
    Unit("m / s")
    >>> q.value
    2.5

.. note:: |quantity| objects are converted to float by default.  Furthermore,
	  any data passed in are copied, which for large arrays may not be
	  optimal.  One can instead obtain a `~numpy.ndarray.view` by
	  passing ``copy=False`` to |quantity|.

Converting to different units
-----------------------------

|quantity| objects can be converted to different units using the
:meth:`~astropy.units.quantity.Quantity.to` method:

    >>> q = 2.3 * u.m / u.s
    >>> q.to(u.km / u.h)  # doctest: +FLOAT_CMP
    <Quantity 8.28 km / h>

For convenience, the `~astropy.units.quantity.Quantity.si` and
`~astropy.units.quantity.Quantity.cgs` attributes can be used to
convert the |quantity| to base S.I. or c.g.s units:

    >>> q = 2.4 * u.m / u.s
    >>> q.si  # doctest: +FLOAT_CMP
    <Quantity 2.4 m / s>
    >>> q.cgs
    <Quantity 240.0 cm / s>

.. _plotting-quantities:

Plotting quantities
-------------------

|quantity| objects can be conveniently plotted using matplotlib.  This
feature needs to be explicitly turned on:

.. doctest-requires:: matplotlib

    >>> from astropy.visualization import quantity_support
    >>> quantity_support()  # doctest: +IGNORE_OUTPUT
    <astropy.visualization.units.MplQuantityConverter ...>

Then |quantity| objects can be passed to matplotlib plotting
functions.  The axis labels are automatically labeled with the unit of
the quantity:

.. doctest-requires:: matplotlib

    >>> from matplotlib import pyplot as plt
    >>> plt.figure(figsize=(5,3))
    <...>
    >>> plt.plot([1, 2, 3] * u.m)
    [...]

.. plot::

    from astropy import units as u
    from astropy.visualization import quantity_support
    quantity_support()
    from matplotlib import pyplot as plt
    plt.figure(figsize=(5,3))
    plt.plot([1, 2, 3] * u.m)

Quantities are automatically converted to the first unit set on a
particular axis, so in the following, the y-axis remains in ``m`` even
though the second line is given in ``cm``:

.. doctest-requires:: matplotlib

    >>> plt.plot([1, 2, 3] * u.cm)
    [...]

.. plot::

    from astropy import units as u
    from astropy.visualization import quantity_support
    quantity_support()
    from matplotlib import pyplot as plt
    plt.figure(figsize=(5,3))
    plt.plot([1, 2, 3] * u.m)
    plt.plot([1, 2, 3] * u.cm)

Plotting a quantity with an incompatible unit will raise an exception:

.. doctest-requires:: matplotlib

    >>> plt.plot([1, 2, 3] * u.kg)  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    UnitConversionError: 'kg' (mass) and 'm' (length) are not convertible
    >>> plt.clf()

To make sure unit support is turned off afterward, you can use
`~astropy.visualization.quantity_support` with a ``with`` statement:

.. doctest-requires:: matplotlib

    >>> from astropy.visualization import quantity_support
    >>> from matplotlib import pyplot as plt
    >>> with quantity_support():
    ...     plt.figure(figsize=(5,3))
    ...     plt.plot([1, 2, 3] * u.m)
    <...>
    [...]

.. plot::

    from astropy import units as u
    from astropy.visualization import quantity_support
    from matplotlib import pyplot as plt
    with quantity_support():
        plt.figure(figsize=(5,3))
        plt.plot([1, 2, 3] * u.m)

Arithmetic
----------

Addition and Subtraction
~~~~~~~~~~~~~~~~~~~~~~~~

Addition or subtraction between |quantity| objects is supported when their
units are equivalent. When the units are equal, the resulting object has the
same unit:

    >>> 11 * u.s + 30 * u.s
    <Quantity 41.0 s>
    >>> 30 * u.s - 11 * u.s
    <Quantity 19.0 s>

If the units are equivalent, but not equal (e.g. kilometer and meter), the
resulting object **has units of the object on the left**:

    >>> 1100.1 * u.m + 13.5 * u.km
    <Quantity 14600.1 m>
    >>> 13.5 * u.km + 1100.1 * u.m  # doctest: +FLOAT_CMP
    <Quantity 14.6001 km>
    >>> 1100.1 * u.m - 13.5 * u.km
    <Quantity -12399.9 m>
    >>> 13.5 * u.km - 1100.1 * u.m  # doctest: +FLOAT_CMP
    <Quantity 12.3999 km>

Addition and subtraction are not supported between |quantity| objects and basic
numeric types:

    >>> 13.5 * u.km + 19.412  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
      ...
    UnitsError: Can only apply 'add' function to dimensionless
    quantities when other argument is not a quantity (unless the
    latter is all zero/infinity/nan)

except for dimensionless quantities (see `Dimensionless quantities`_).

Multiplication and Division
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Multiplication and division are supported between |quantity| objects with any
units, and with numeric types. For these operations between objects with
equivalent units, the **resulting object has composite units**:

    >>> 1.1 * u.m * 140.3 * u.cm  # doctest: +FLOAT_CMP
    <Quantity 154.33 cm m>
    >>> 140.3 * u.cm * 1.1 * u.m  # doctest: +FLOAT_CMP
    <Quantity 154.33 cm m>
    >>> 1. * u.m / (20. * u.cm)  # doctest: +FLOAT_CMP
    <Quantity 0.05 m / cm>
    >>> 20. * u.cm / (1. * u.m)
    <Quantity 20.0 cm / m>

For multiplication, you can change how to represent the resulting object by
using the :meth:`~astropy.units.quantity.Quantity.to` method:

    >>> (1.1 * u.m * 140.3 * u.cm).to(u.m**2)  # doctest: +FLOAT_CMP
    <Quantity 1.5433000000000001 m2>
    >>> (1.1 * u.m * 140.3 * u.cm).to(u.cm**2)  # doctest: +FLOAT_CMP
    <Quantity 15433.000000000002 cm2>

For division, if the units are equivalent, you may want to make the resulting
object dimensionless by reducing the units. To do this, use the
:meth:`~astropy.units.quantity.Quantity.decompose()` method:

    >>> (20. * u.cm / (1. * u.m)).decompose()  # doctest: +FLOAT_CMP
    <Quantity 0.2>

This method is also useful for more complicated arithmetic:

    >>> 15. * u.kg * 32. * u.cm * 15 * u.m / (11. * u.s * 1914.15 * u.ms)  # doctest: +FLOAT_CMP
    <Quantity 0.3419509727792778 cm kg m / (ms s)>
    >>> (15. * u.kg * 32. * u.cm * 15 * u.m / (11. * u.s * 1914.15 * u.ms)).decompose()  # doctest: +FLOAT_CMP
    <Quantity 3.4195097277927777 kg m2 / s2>


Numpy functions
---------------

|quantity| objects are actually full Numpy arrays (the |quantity|
object class inherits from and extends the ``numpy.ndarray`` class), and
we have tried to ensure that most Numpy functions behave properly with
quantities:

    >>> q = np.array([1., 2., 3., 4.]) * u.m / u.s
    >>> np.mean(q)
    <Quantity 2.5 m / s>
    >>> np.std(q)  # doctest: +FLOAT_CMP
    <Quantity 1.118033988749895 m / s>

including functions that only accept specific units such as angles:

    >>> q = 30. * u.deg
    >>> np.sin(q)  # doctest: +FLOAT_CMP
    <Quantity 0.49999999999999994>

or dimensionless quantities:

    >>> from astropy.constants import h, k_B
    >>> nu = 3 * u.GHz
    >>> T = 30 * u.K
    >>> np.exp(-h * nu / (k_B * T))  # doctest: +FLOAT_CMP
    <Quantity 0.995212254618668>

(see `Dimensionless quantities`_ for more details).

Dimensionless quantities
------------------------

Dimensionless quantities have the characteristic that if they are
added or subtracted from a Python scalar or unitless `~numpy.ndarray`,
or if they are passed to a Numpy function that takes dimensionless
quantities, the units are simplified so that the quantity is
dimensionless and scale-free. For example:

    >>> 1. + 1. * u.m / u.km  # doctest: +FLOAT_CMP
    <Quantity 1.001>

which is different from:

    >>> 1. + (1. * u.m / u.km).value
    2.0

In the latter case, the result is ``2.0`` because the unit of ``(1. * u.m /
u.km)`` is not scale-free by default:

    >>> q = (1. * u.m / u.km)
    >>> q.unit
    Unit("m / km")
    >>> q.unit.decompose()
    Unit(dimensionless with a scale of 0.001)

However, when combining with a non-quantity object, the unit is automatically
decomposed to be scale-free, giving the expected result.

This also occurs when passing dimensionless quantities to functions that take
dimensionless quantities:

    >>> nu = 3 * u.GHz
    >>> T = 30 * u.K
    >>> np.exp(- h * nu / (k_B * T))  # doctest: +FLOAT_CMP
    <Quantity 0.995212254618668>

The result is independent from the units the different quantities were specified in:

    >>> nu = 3.e9 * u.Hz
    >>> T = 30 * u.K
    >>> np.exp(- h * nu / (k_B * T))  # doctest: +FLOAT_CMP
    <Quantity 0.995212254618668>

Converting to plain Python scalars
----------------------------------

Converting |quantity| objects does not work for non-dimensionless quantities:

    >>> float(3. * u.m)
    Traceback (most recent call last):
      ...
    TypeError: Only dimensionless scalar quantities can be converted
    to Python scalars

Instead, only dimensionless values can be converted to plain Python scalars:

    >>> float(3. * u.m / (4. * u.m))
    0.75
    >>> float(3. * u.km / (4. * u.m))
    750.0
    >>> int(6. * u.km / (2. * u.m))
    3000

Functions Accepting Quantities
------------------------------

Validation of quantity arguments to functions can lead to many repetitions
of the same checking code. A decorator is provided which verifies that certain
arguments to a function are `~astropy.units.Quantity` objects and that the units
are compatible with a desired unit.

The decorator does not convert the unit to the desired unit, say arcseconds
to degrees, it merely checks that such a conversion is possible, thus verifying
that the `~astropy.units.Quantity` argument can be used in calculations.

The decorator `~astropy.units.quantity_input` accepts keyword arguments to
specify which arguments should be validated and what unit they are expected to
be compatible with:

    >>> @u.quantity_input(myarg=u.deg)
    ... def myfunction(myarg):
    ...     return myarg.unit

    >>> myfunction(100*u.arcsec)
    Unit("arcsec")

Under Python 3 you can use the annotations syntax to provide the units:

    >>> @u.quantity_input  # doctest: +SKIP
    ... def myfunction(myarg: u.arcsec):
    ...     return myarg.unit

    >>> myfunction(100*u.arcsec)  # doctest: +SKIP
    Unit("arcsec")

Representing vectors with units
-------------------------------

|quantity| objects can, like numpy arrays, be used to represent vectors or
matrices by assigning specific dimensions to represent the coordinates or
matrix elements, but that implies tracking those dimensions carefully. For
vectors, one can use instead the representations underlying coordinates, which
allow one to use representations other than cartesian (such as spherical or
cylindrical), as well as simple vector arithmetic.  For details, see
:ref:`astropy-coordinates-representations`.

Known issues with conversion to numpy arrays
--------------------------------------------

Since |quantity| objects are Numpy arrays, we are not able to ensure
that only dimensionless quantities are converted to Numpy arrays:

    >>> np.array([1, 2, 3] * u.m)
    array([ 1., 2., 3.])

Similarly, while most numpy functions work properly, a few have :ref:`known
issues <quantity_issues>`, either ignoring the unit (e.g., ``np.dot``) or
not reinitializing it properly (e.g., ``np.hstack``).  This propagates to
more complex functions such as ``np.linalg.norm`` and
``scipy.integrate.odeint``.

Subclassing Quantity
--------------------

To subclass |quantity|, one generally proceeds as one would when subclassing
:class:`~numpy.ndarray`, i.e., one typically needs to override ``__new__``
(rather than ``__init__``) and uses the ``numpy.ndarray.__array_finalize__``
method to update attributes.  For details, see the `numpy documentation on
subclassing
<http://docs.scipy.org/doc/numpy/user/basics.subclassing.html>`__.  For
examples, one can look at |quantity| itself, where, e.g., the
``astropy.units.Quantity.__array_finalize__`` method is used to pass on the
``unit``, at :class:`~astropy.coordinates.Angle`, where strings are parsed
as angles in the ``astropy.coordinates.Angle.__new__`` method and at
:class:`~astropy.coordinates.Longitude`, where the
``astropy.coordinates.Longitude.__array_finalize__`` method is used to pass
on the angle at which longitudes wrap.

Another method that is meant to be overridden by subclasses, one specific to
|quantity|, is ``astropy.units.Quantity.__quantity_subclass__``.  This is
called to decide which type of subclass to return, based on the unit of the
quantity that is to be created.  It is used, e.g., in
:class:`~astropy.coordinates.Angle` to return a |quantity| if a calculation
returns a unit other than an angular one.