File: statistics.py

package info (click to toggle)
python-asv-runner 0.2.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 420 kB
  • sloc: python: 1,631; makefile: 13
file content (578 lines) | stat: -rw-r--r-- 18,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import math


def get_err(result, stats):
    """
    Computes an 'error measure' based on the interquartile range of the
    measurement results.

    #### Parameters
    **result** (`any`)
    : The measurement results. Currently unused.

    **stats** (`dict`)
    : A dictionary of statistics computed from the measurement results.
      It should contain the keys "q_25" and "q_75" representing the 25th and
      75th percentiles respectively.

    #### Returns
    **error** (`float`)
    : The error measure, defined as half the interquartile range
    (i.e., (Q3 - Q1) / 2).
    """
    a, b = stats["q_25"], stats["q_75"]
    return (b - a) / 2


def binom_pmf(n, k, p):
    """
    Computes the Probability Mass Function (PMF) for a binomial distribution.

    #### Parameters
    **n** (`int`)
    : The number of trials in the binomial distribution.

    **k** (`int`)
    : The number of successful trials.

    **p** (`float`)
    : The probability of success on each trial.

    #### Returns
    **pmf** (`float`)
    : The binomial PMF computed as (n choose k) * p**k * (1 - p)**(n - k).

    #### Notes
    Handles edge cases where p equals 0 or 1.
    """
    if not (0 <= k <= n):
        return 0
    if p == 0:
        return 1.0 * (k == 0)
    elif p == 1.0:
        return 1.0 * (k == n)

    logp = math.log(p)
    log1mp = math.log(1 - p)
    lg1pn = math.lgamma(1 + n)
    lg1pnmk = math.lgamma(1 + n - k)
    lg1pk = math.lgamma(1 + k)
    return math.exp(lg1pn - lg1pnmk - lg1pk + k * logp + (n - k) * log1mp)


def quantile(x, q):
    """
    Computes a quantile/percentile from a dataset.

    #### Parameters
    **x** (`list` of `float`)
    : The dataset for which the quantile is to be computed.

    **q** (`float`)
    : The quantile to compute. Must be in the range [0, 1].

    #### Returns
    **m** (`float`)
    : The computed quantile from the dataset.

    #### Raises
    **ValueError**
    : If the provided quantile q is not in the range [0, 1].

    #### Notes
    This function sorts the input data and calculates the quantile
    using a linear interpolation method if the desired quantile lies
    between two data points.
    """
    if not 0 <= q <= 1:
        raise ValueError("Invalid quantile")

    y = sorted(x)
    n = len(y)

    z = (n - 1) * q
    j = int(math.floor(z))
    z -= j

    return y[-1] if j == n - 1 else (1 - z) * y[j] + z * y[j + 1]


def quantile_ci(x, q, alpha_min=0.01):
    """
    Compute a quantile and a confidence interval for a given dataset.

    #### Parameters
    **x** (`list` of `float`)
    : The dataset from which the quantile and confidence interval are computed.

    **q** (`float`)
    : The quantile to compute. Must be in the range [0, 1].

    **alpha_min** (`float`, optional)
    : Limit for coverage. The result has coverage >= 1 - alpha_min. Defaults to 0.01.

    #### Returns
    **m** (`float`)
    : The computed quantile from the dataset.

    **ci** (`tuple` of `float`)
    : Confidence interval (a, b), of coverage >= alpha_min.

    #### Notes
    This function assumes independence but is otherwise nonparametric. It sorts
    the input data and calculates the quantile using a linear interpolation
    method if the desired quantile lies between two data points. The confidence
    interval is computed using a known property of the cumulative distribution
    function (CDF) of a binomial distribution. This method calculates the
    smallest range (y[r-1], y[s-1]) for which the coverage is at least
    alpha_min.
    """

    y = sorted(x)
    n = len(y)

    alpha_min = min(alpha_min, 1 - alpha_min)
    pa = alpha_min / 2
    pb = 1 - pa

    a = -math.inf
    b = math.inf

    # It's known that
    #
    # Pr[X_{(r)} < m < X_{(s)}] = Pr[r <= K <= s-1], K ~ Bin(n,p)
    #
    # where cdf(m) = p defines the quantile.
    #
    # Simplest median CI follows by picking r,s such that
    #
    #   F(r;n,q) <= alpha/2
    #   F(s;n,q) >= 1 - alpha/2
    #
    #   F(k;n,q) = sum(binom_pmf(n, j, q) for j in range(k))
    #
    # Then (y[r-1], y[s-1]) is a CI.
    # If no such r or s exists, replace by +-inf.

    F = 0
    for k, yp in enumerate(y):
        F += binom_pmf(n, k, q)
        # F = F(k+1;n,q)

        if F <= pa:
            a = yp

        if F >= pb:
            b = yp
            break

    m = quantile(y, q)
    return m, (a, b)


class LaplacePosterior:
    """
    Class to represent univariate Laplace posterior distribution.

    #### Description
    This class represents the univariate posterior distribution defined as
    `p(beta|y) = N [sum(|y_j - beta|)]**(-nu-1)` where N is the normalization factor.

    #### Parameters
    **y** (`list` of `float`)
    : A list of sample values from the distribution.

    **nu** (`float`, optional)
    : Degrees of freedom. Default is `len(y) - 1`.

    #### Attributes
    **mle** (`float`)
    : The maximum likelihood estimate for beta which is the median of y.

    #### Notes
    This is the posterior distribution in the Bayesian model assuming Laplace
    distributed noise, where `p(y|beta,sigma) = N exp(- sum_j (1/sigma) |y_j -
    beta|)`, `p(sigma) ~ 1/sigma`, and `nu = len(y) - 1`. The MLE for beta is
    `median(y)`. Applying the same approach to a Gaussian model results to
    `p(beta|y) = N T(t, m-1)`, `t = (beta - mean(y)) / (sstd(y) / sqrt(m))`
    where `T(t, nu)` is the Student t-distribution pdf, which gives the standard
    textbook formulas for the mean.
    """

    def __init__(self, y, nu=None):
        """
        Initializes an instance of the LaplacePosterior class.

        #### Parameters
        **y** (`list` of `float`):
        : The samples from the distribution.

        **nu** (`float`, optional):
        : The degrees of freedom. Default is `len(y) - 1`.

        #### Raises
        `ValueError`: If `y` is an empty list.

        #### Notes
        This constructor sorts the input data `y` and calculates the MLE
        (Maximum Likelihood Estimate).  It computes a scale factor, `_y_scale`,
        to prevent overflows when computing unnormalized CDF integrals.  The
        input data `y` is then shifted and scaled according to this computed
        scale.  The method also initializes a memoization dictionary `_cdf_memo`
        for the unnormalized CDF, and a placeholder `_cdf_norm` for the
        normalization constant of the CDF.
        """
        if len(y) == 0:
            raise ValueError("empty input")

        self.nu = len(y) - 1 if nu is None else nu
        # Sort input
        y = sorted(y)

        # Get location and scale so that data is centered at MLE, and
        # the unnormalized PDF at MLE has amplitude ~ 1/nu.
        #
        # Proper scaling of inputs is important to avoid overflows
        # when computing the unnormalized CDF integrals below.
        self.mle = quantile(y, 0.5)
        self._y_scale = sum(abs(yp - self.mle) for yp in y)
        self._y_scale *= self.nu ** (1 / (self.nu + 1))

        # Shift and scale
        if self._y_scale != 0:
            self.y = [(yp - self.mle) / self._y_scale for yp in y]
        else:
            self.y = [0 for _ in y]

        self._cdf_norm = None
        self._cdf_memo = {}

    def _cdf_unnorm(self, beta):
        """
        Computes the unnormalized cumulative distribution function (CDF).

        #### Parameters
        **beta** (`float`):
        : The upper limit of the integration for the CDF.

        #### Returns
        Returns the unnormalized CDF evaluated at `beta`.

        #### Notes
        The method computes the unnormalized CDF as:

            cdf_unnorm(b) = int_{-oo}^{b} 1/(sum_j |y - b'|)**(m+1) db'

        The method integrates piecewise, resolving the absolute values
        separately for each section. The results of these calculations
        are memoized to speed up subsequent computations.

        It also handles special cases, such as when `beta` is not a number
        (returns `beta` as is), or when `beta` is positive infinity
        (memoizes the integral value at the end of the list `y`).
        """
        if beta != beta:
            return beta

        k0 = next((k for k, y in enumerate(self.y) if y > beta), len(self.y))
        cdf = 0

        nu = self.nu

        # Save some work by memoizing intermediate results
        if k0 - 1 in self._cdf_memo:
            k_start = k0
            cdf = self._cdf_memo[k0 - 1]
        else:
            k_start = 0
            cdf = 0

        # Do the integral piecewise, resolving the absolute values
        for k in range(k_start, k0 + 1):
            c = 2 * k - len(self.y)
            y = sum(self.y[k:]) - sum(self.y[:k])

            a = -math.inf if k == 0 else self.y[k - 1]
            b = beta if k == k0 else self.y[k]
            if c == 0:
                term = (b - a) / y ** (nu + 1)
            else:
                term = 1 / (nu * c) * ((a * c + y) ** (-nu) - (b * c + y) ** (-nu))

            cdf += max(0, term)  # avoid rounding error

            if k != k0:
                self._cdf_memo[k] = cdf

        if beta == math.inf:
            self._cdf_memo[len(self.y)] = cdf

        return cdf

    def _ppf_unnorm(self, cdfx):
        """
        Computes the inverse function of `_cdf_unnorm`.

        #### Parameters
        **cdfx** (`float`):
        : The value for which to compute the inverse cumulative distribution
        function (CDF).

        #### Returns
        Returns the unnormalized quantile function evaluated at `cdfx`.

        #### Notes
        This method computes the inverse of `_cdf_unnorm`. It first finds the
        interval within which `cdfx` lies, then performs the inversion on this
        interval.

        Special cases are handled when the interval index `k` is 0 (the
        computation of `beta` involves a check for negative infinity), or when
        the calculated `c` is 0. The result `beta` is clipped at the upper bound
        of the interval, ensuring it does not exceed `self.y[k]`.
        """
        # Find interval
        for k in range(len(self.y) + 1):
            if cdfx <= self._cdf_memo[k]:
                break

        # Invert on interval
        c = 2 * k - len(self.y)
        y = sum(self.y[k:]) - sum(self.y[:k])
        nu = self.nu
        if k == 0:
            term = cdfx
        else:
            a = self.y[k - 1]
            term = cdfx - self._cdf_memo[k - 1]

        if k == 0:
            z = -nu * c * term
            beta = (z ** (-1 / nu) - y) / c if z > 0 else -math.inf
        elif c == 0:
            beta = a + term * y ** (nu + 1)
        else:
            z = (a * c + y) ** (-nu) - nu * c * term
            beta = (z ** (-1 / nu) - y) / c if z > 0 else math.inf
        if k < len(self.y):
            beta = min(beta, self.y[k])

        return beta

    def pdf(self, beta):
        """
        Computes the probability distribution function (PDF).

        #### Parameters
        **beta** (`float`)
        : The point at which to evaluate the PDF.

        #### Returns
        A `float` which is the probability density function evaluated at `beta`.

        #### Notes
        This function computes the PDF by exponentiating the result of
        `self.logpdf(beta)`.  The `logpdf` method should therefore be
        implemented in the class that uses this method.
        """
        return math.exp(self.logpdf(beta))

    def logpdf(self, beta):
        """
        Computes the logarithm of the probability distribution function (log-PDF).

        #### Parameters
        **beta** (`float`)
        : The point at which to evaluate the log-PDF.

        #### Returns
        A `float` which is the logarithm of the probability density function
        evaluated at `beta`.

        #### Notes
        This function computes the log-PDF by first checking if the scale of the
        distribution `_y_scale` is zero.  If so, it returns `math.inf` if `beta`
        equals the maximum likelihood estimate `mle`, otherwise it returns
        `-math.inf`.

        The `beta` value is then transformed by subtracting the maximum
        likelihood estimate `mle` and dividing by `_y_scale`.

        If the unnormalized cumulative distribution function `_cdf_norm` has not
        been computed yet, it is computed by calling `_cdf_unnorm(math.inf)`.

        The function then computes the sum of absolute differences between
        `beta` and all points in `y`, applies the log-PDF formula and returns
        the result.
        """
        if self._y_scale == 0:
            return math.inf if beta == self.mle else -math.inf

        beta = (beta - self.mle) / self._y_scale

        if self._cdf_norm is None:
            self._cdf_norm = self._cdf_unnorm(math.inf)

        ws = sum(abs(yp - beta) for yp in self.y)
        m = self.nu
        return (
            -(m + 1) * math.log(ws) - math.log(self._cdf_norm) - math.log(self._y_scale)
        )

    def cdf(self, beta):
        """
        Computes the cumulative distribution function (CDF).

        #### Parameters
        **beta** (`float`)
        : The point at which to evaluate the CDF.

        #### Returns
        A `float` which is the value of the cumulative distribution function
        evaluated at `beta`.

        #### Notes
        This function computes the CDF by first checking if the scale of the
        distribution `_y_scale` is zero.  If so, it returns 1 if `beta` is
        greater than the maximum likelihood estimate `mle`, and 0 otherwise.

        The `beta` value is then transformed by subtracting the maximum
        likelihood estimate `mle` and dividing by `_y_scale`.

        If the unnormalized cumulative distribution function `_cdf_norm` has not
        been computed yet, it is computed by calling `_cdf_unnorm(math.inf)`.

        The function then computes the unnormalized CDF at `beta` and normalizes
        it by dividing with `_cdf_norm`.
        """
        if self._y_scale == 0:
            return 1.0 * (beta > self.mle)

        beta = (beta - self.mle) / self._y_scale

        if self._cdf_norm is None:
            self._cdf_norm = self._cdf_unnorm(math.inf)
        return self._cdf_unnorm(beta) / self._cdf_norm

    def ppf(self, cdf):
        """
        Computes the percent point function (PPF), also known as the inverse
        cumulative distribution function.

        #### Parameters
        **cdf** (`float`)
        : The cumulative probability for which to compute the inverse CDF. It
        must be between 0 and 1 (inclusive).

        #### Returns
        A `float` which is the value of the percent point function evaluated at
        `cdf`.

        #### Notes
        This function computes the PPF by first checking if `cdf` is not between
        0 and 1. If it is not, it returns `math.nan`.

        If the scale of the distribution `_y_scale` is zero, it returns the
        maximum likelihood estimate `mle`.

        If the unnormalized cumulative distribution function `_cdf_norm` has not
        been computed yet, it is computed by calling `_cdf_unnorm(math.inf)`.

        The function then scales `cdf` by `_cdf_norm` (making sure it does not
        exceed `_cdf_norm`), computes the unnormalized PPF at this scaled value,
        and transforms it back to the original scale.
        """
        if cdf < 0 or cdf > 1.0:
            return math.nan

        if self._y_scale == 0:
            return self.mle

        if self._cdf_norm is None:
            self._cdf_norm = self._cdf_unnorm(math.inf)

        cdfx = min(cdf * self._cdf_norm, self._cdf_norm)
        beta = self._ppf_unnorm(cdfx)
        return beta * self._y_scale + self.mle


def compute_stats(samples, number):
    """
    Performs statistical analysis on the provided samples.

    #### Parameters
    **samples** (`list` of `float`)
    : A list of total times (in seconds) of benchmarks.

    **number** (`int`)
    : The number of times each benchmark was repeated.

    #### Returns
    **beta_hat** (`float`)
    : The estimated time per iteration.

    **stats** (`dict`)
    : A dictionary containing various statistical measures of the estimator. It
    includes:
        - **"ci_99_a"**: The lower bound of the 99% confidence interval.
        - **"ci_99_b"**: The upper bound of the 99% confidence interval.
        - **"q_25"**: The 25th percentile of the sample times.
        - **"q_75"**: The 75th percentile of the sample times.
        - **"repeat"**: The total number of samples.
        - **"number"**: The repeat number for each sample.

    #### Notes
    This function first checks if there are any samples. If there are none, it
    returns `None, None`.

    It then calculates the median and the 25th and 75th percentiles of the
    samples. If the nonparametric confidence interval estimation did not provide
    an estimate, it computes the posterior distribution for the location,
    assuming exponential noise. The Maximum Likelihood Estimate (MLE) is equal
    to the median. The function uses the confidence interval from that
    distribution to extend beyond the sample bounds if necessary.

    Finally, it produces the median as the result and a dictionary of the
    computed statistics.
    """

    if len(samples) < 1:
        return None, None

    Y = list(samples)

    # Median and quantiles
    y_50, ci_50 = quantile_ci(Y, 0.5, alpha_min=0.99)
    y_25 = quantile(Y, 0.25)
    y_75 = quantile(Y, 0.75)

    # If nonparametric CI estimation didn't give an estimate,
    # use the credible interval of a bayesian posterior distribution.
    a, b = ci_50
    if (math.isinf(a) or math.isinf(b)) and len(Y) > 1:
        # Compute posterior distribution for location, assuming
        # exponential noise. The MLE is equal to the median.
        c = LaplacePosterior(Y)

        # Use the CI from that distribution to extend beyond sample
        # bounds
        if math.isinf(a):
            a = min(c.ppf(0.01 / 2), min(Y))
        if math.isinf(b):
            b = max(c.ppf(1 - 0.01 / 2), max(Y))

        ci_50 = (a, b)

    # Produce results
    result = y_50

    stats = {
        "ci_99_a": ci_50[0],
        "ci_99_b": ci_50[1],
        "q_25": y_25,
        "q_75": y_75,
        "repeat": len(Y),
        "number": number,
    }

    return result, stats