1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
|
import importlib.util
import pytest
import autoray as ar
from autoray import shape
import numpy as np
# find backends to tests
BACKENDS = [pytest.param("numpy")]
for lib in [
"cupy",
"dask",
"tensorflow",
"torch",
"mars",
"jax",
"sparse",
"paddle",
]:
if importlib.util.find_spec(lib):
BACKENDS.append(pytest.param(lib))
if lib == "jax":
import os
import jax
jax.config.update("jax_enable_x64", True)
jax.config.update("jax_platform_name", "cpu")
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
else:
BACKENDS.append(
pytest.param(
lib, marks=pytest.mark.skipif(True, reason=f"No {lib}.")
)
)
JAX_RANDOM_KEY = None
def gen_rand(shape, backend, dtype="float64"):
if "complex" in dtype:
re = gen_rand(shape, backend)
im = gen_rand(shape, backend)
return ar.astype(ar.do("complex", re, im), dtype)
if backend == "jax":
from jax import random as jrandom
global JAX_RANDOM_KEY
if JAX_RANDOM_KEY is None:
JAX_RANDOM_KEY = jrandom.PRNGKey(42)
JAX_RANDOM_KEY, subkey = jrandom.split(JAX_RANDOM_KEY)
return jrandom.uniform(subkey, shape=shape, dtype=dtype)
elif backend == "sparse":
x = ar.do(
"random.uniform",
size=shape,
like=backend,
density=0.5,
format="coo",
fill_value=0,
)
else:
x = ar.do("random.uniform", size=shape, like=backend)
x = ar.astype(x, ar.to_backend_dtype(dtype, backend))
assert ar.get_dtype_name(x) == dtype
return x
@pytest.mark.parametrize(
"f,args,xfail_backends",
(
("all", (), ()),
("clip", (0.2, 0.7), ()),
("conj", (), ()),
("cos", (), ()),
("cosh", (), ()),
("count_nonzero", (), ()),
("cumsum", (0,), ("sparse",)),
("diag", (), ("sparse",)),
("diag", (1,), ("sparse",)),
("diag", (-1,), ("sparse",)),
("exp", (), ()),
("imag", (), ()),
("log", (), ()),
("log10", (), ()),
("max", (-1,), ("sparse",)),
("max", (), ()),
("mean", (), ()),
("mean", (0,), ("sparse",)),
("min", (), ()),
("power", (2,), ("sparse",)),
("prod", (), ()),
("ravel", (), ("sparse",)),
("real", (), ()),
("sin", (), ()),
("sinh", (), ()),
("sqrt", (), ()),
("sum", (), ()),
("sum", (1,), ()),
("tan", (), ()),
("tanh", (), ()),
("trace", (), ("sparse",)),
("tril", (), ()),
("tril", (), (1,)),
("tril", (), (-1,)),
("triu", (), ()),
("triu", (), (1,)),
("triu", (), (-1,)),
),
)
@pytest.mark.parametrize("backend", BACKENDS)
def test_unary_functions(f, args, xfail_backends, backend):
if backend in xfail_backends:
pytest.xfail(f"{backend} doesn't support {f}.")
xn = ar.do("random.uniform", size=(4, 5), like="numpy")
yn = ar.do(f, xn, *args)
x = ar.do("asarray", xn, like=backend)
y = ar.do(f, x, *args)
yt = ar.do("to_numpy", y)
assert ar.do("allclose", yt, yn)
@pytest.mark.parametrize(
"f,args,xfail_backends",
(
("add", (), ()),
("allclose", (), ("sparse",)),
("divide", (), ()),
("matmul", (), ()),
("multiply", (), ()),
("subtract", (), ()),
),
)
@pytest.mark.parametrize("backend", BACKENDS)
def test_binary_functions(f, args, xfail_backends, backend):
if backend in xfail_backends:
pytest.xfail(f"{backend} doesn't support {f}.")
xan = ar.do("random.uniform", size=(3, 3), like="numpy")
xbn = ar.do("random.uniform", size=(3, 3), like="numpy")
yn = ar.do(f, xan, xbn, *args)
xa = ar.do("asarray", xan, like=backend)
xb = ar.do("asarray", xbn, like=backend)
y = ar.do(f, xa, xb, *args)
yt = ar.do("to_numpy", y)
assert ar.do("allclose", yt, yn)
@pytest.mark.parametrize(
"f",
[
"sum",
"prod",
"max",
"min",
"mean",
],
)
@pytest.mark.parametrize(
"kwargs",
[
{},
{"axis": 1},
{"axis": 1, "keepdims": True},
{"axis": (0, 2)},
],
)
@pytest.mark.parametrize("backend", BACKENDS)
def test_reduce_functions(f, kwargs, backend):
if (
backend == "torch"
and f == "prod"
and isinstance(kwargs.get("axis"), tuple)
):
pytest.xfail("Pytorch doesn't support prod with tuple axis.")
x = ar.do("random.normal", size=(2, 3, 4), like="numpy")
y = ar.do(f, x, **kwargs)
xb = ar.do("asarray", x, like=backend)
yb = ar.do(f, xb, **kwargs)
yt = ar.do("to_numpy", yb)
assert ar.do("allclose", yt, y)
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize("fn", ["sqrt", "exp", "sum"])
def test_basic(backend, fn):
if (backend == "ctf") and fn in ("sqrt", "sum"):
pytest.xfail("ctf doesn't have sqrt, and converts sum output to numpy")
x = gen_rand((2, 3, 4), backend)
y = ar.do(fn, x)
if (backend == "sparse") and (fn == "sum"):
pytest.xfail("Sparse 'sum' outputs dense.")
assert ar.infer_backend(x) == ar.infer_backend(y) == backend
def test_infer_backend_multi():
x = 1.0
y = gen_rand((2, 3), "numpy")
z = ar.lazy.Variable((4, 5))
assert ar.infer_backend_multi(x) == "builtins"
assert ar.infer_backend_multi(x, y) == "numpy"
assert ar.infer_backend_multi(x, y, z) == "autoray.lazy"
def test_raises_import_error_when_missing():
with pytest.raises(ImportError):
ar.do("anonexistantfunction", 1, like="numpy")
with pytest.raises(ImportError):
ar.do("ones", 1, like="anonexistantbackend")
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize(
"fn,args",
[
(ar.conj, []),
(ar.transpose, []),
(ar.real, []),
(ar.imag, []),
(ar.reshape, [(5, 3)]),
],
)
def test_attribute_prefs(backend, fn, args):
if (backend == "torch") and fn in (ar.real, ar.imag):
pytest.xfail("Pytorch doesn't support complex numbers yet...")
x = gen_rand((3, 5), backend)
y = fn(x, *args)
assert ar.infer_backend(x) == ar.infer_backend(y) == backend
def modified_gram_schmidt(X):
Q = []
for j in range(0, shape(X)[0]):
q = X[j, :]
for i in range(0, j):
rij = ar.do("tensordot", ar.do("conj", Q[i]), q, 1)
q = q - rij * Q[i]
rjj = ar.do("linalg.norm", q, 2)
Q.append(q / rjj)
return ar.do("stack", Q, axis=0)
@pytest.mark.parametrize("backend", BACKENDS)
def test_mgs(backend):
if backend == "sparse":
pytest.xfail("Sparse doesn't support linear algebra yet...")
if backend == "ctf":
pytest.xfail("ctf does not have 'stack' function.")
x = gen_rand((3, 5), backend)
Ux = modified_gram_schmidt(x)
y = ar.do("sum", Ux @ ar.dag(Ux))
assert ar.to_numpy(y) == pytest.approx(3)
def modified_gram_schmidt_np_mimic(X):
from autoray import numpy as np
print(np)
Q = []
for j in range(0, shape(X)[0]):
q = X[j, :]
for i in range(0, j):
rij = np.tensordot(np.conj(Q[i]), q, 1)
q = q - rij * Q[i]
rjj = np.linalg.norm(q, 2)
Q.append(q / rjj)
return np.stack(Q, axis=0)
def test_numpy_mimic_dunder_methods():
from abc import ABC
from autoray import numpy as np
class Base(ABC):
pass
assert isinstance(np, object)
assert not isinstance(np, Base)
print(np)
dir(np)
@pytest.mark.parametrize("backend", BACKENDS)
def test_mgs_np_mimic(backend):
if backend == "sparse":
pytest.xfail("Sparse doesn't support linear algebra yet...")
if backend == "ctf":
pytest.xfail("ctf does not have 'stack' function.")
x = gen_rand((3, 5), backend)
Ux = modified_gram_schmidt_np_mimic(x)
y = ar.do("sum", Ux @ ar.dag(Ux))
assert ar.to_numpy(y) == pytest.approx(3)
@pytest.mark.parametrize("backend", BACKENDS)
def test_linalg_svd_square(backend):
if backend == "sparse":
pytest.xfail("Sparse doesn't support linear algebra yet...")
x = gen_rand((5, 4), backend)
U, s, V = ar.do("linalg.svd", x)
assert (
ar.infer_backend(x)
== ar.infer_backend(U)
== ar.infer_backend(s)
== ar.infer_backend(V)
== backend
)
y = U @ ar.do("diag", s, like=x) @ V
diff = ar.do("sum", ar.do("abs", y - x))
assert ar.to_numpy(diff) < 1e-8
@pytest.mark.parametrize("backend", BACKENDS)
def test_translator_random_uniform(backend):
from autoray import numpy as anp
if backend == "sparse":
pytest.xfail("Sparse will have zeros")
x = anp.random.uniform(low=-10, size=(4, 5), like=backend)
assert (ar.to_numpy(x) > -10).all()
assert (ar.to_numpy(x) < 1.0).all()
# test default single scalar
x = anp.random.uniform(low=1000, high=2000, like=backend)
assert 1000 <= ar.to_numpy(x) < 2000
@pytest.mark.parametrize("backend", BACKENDS)
def test_translator_random_normal(backend):
if backend == "ctf":
pytest.xfail()
from autoray import numpy as anp
x = anp.random.normal(100.0, 0.1, size=(4, 5), like=backend)
if backend == "sparse":
assert (x.data > 90.0).all()
assert (x.data < 110.0).all()
return
assert (ar.to_numpy(x) > 90.0).all()
assert (ar.to_numpy(x) < 110.0).all()
if backend == "tensorflow":
x32 = ar.do(
"random.normal",
100.0,
0.1,
dtype="float32",
size=(4, 5),
like=backend,
)
assert x32.dtype == "float32"
assert (ar.to_numpy(x32) > 90.0).all()
assert (ar.to_numpy(x32) < 110.0).all()
# test default single scalar
x = anp.random.normal(loc=1500, scale=10, like=backend)
assert 1000 <= ar.to_numpy(x) < 2000
@pytest.mark.parametrize("backend", BACKENDS)
def test_tril(backend):
x = gen_rand((4, 4), backend)
xl = ar.do("tril", x)
xln = ar.to_numpy(xl)
assert xln[0, 1] == 0.0
if backend != "sparse":
# this won't work for sparse because density < 1
assert (xln > 0.0).sum() == 10
xl = ar.do("tril", x, k=1)
xln = ar.to_numpy(xl)
if backend != "sparse":
# this won't work for sparse because density < 1
assert xln[0, 1] != 0.0
assert xln[0, 2] == 0.0
if backend != "sparse":
# this won't work for sparse because density < 1
assert (xln > 0.0).sum() == 13
@pytest.mark.parametrize("backend", BACKENDS)
def test_triu(backend):
x = gen_rand((4, 4), backend)
xl = ar.do("triu", x)
xln = ar.to_numpy(xl)
assert xln[1, 0] == 0.0
if backend != "sparse":
# this won't work for sparse because density < 1
assert (xln > 0.0).sum() == 10
xl = ar.do("triu", x, k=-1)
xln = ar.to_numpy(xl)
if backend != "sparse":
# this won't work for sparse because density < 1
assert xln[1, 0] != 0.0
assert xln[2, 0] == 0.0
if backend != "sparse":
# this won't work for sparse because density < 1
assert (xln > 0.0).sum() == 13
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize("shape", [(4, 3), (4, 4), (3, 4)])
def test_qr_thin_square_fat(backend, shape):
if backend == "sparse":
pytest.xfail("Sparse doesn't support linear algebra yet...")
x = gen_rand(shape, backend)
Q, R = ar.do("linalg.qr", x)
xn, Qn, Rn = map(ar.to_numpy, (x, Q, R))
assert ar.do("allclose", xn, Qn @ Rn)
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize("array_dtype", ["int", "float", "bool"])
def test_count_nonzero(backend, array_dtype):
if backend == "mars":
import mars
if tuple(map(int, mars.__version__.split("."))) < (0, 4, 0):
pytest.xfail("mars count_nonzero bug fixed in version 0.4.")
if backend == "ctf" and array_dtype == "bool":
pytest.xfail("ctf doesn't support bool array dtype")
if array_dtype == "int":
x = ar.do("asarray", [0, 1, 2, 0, 3], like=backend)
elif array_dtype == "float":
x = ar.do("asarray", [0.0, 1.0, 2.0, 0.0, 3.0], like=backend)
elif array_dtype == "bool":
x = ar.do("asarray", [False, True, True, False, True], like=backend)
nz = ar.do("count_nonzero", x)
assert ar.to_numpy(nz) == 3
def test_pseudo_submodules():
x = gen_rand((2, 3), "numpy")
xT = ar.do("numpy.transpose", x, like="autoray")
assert shape(xT) == (3, 2)
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize("creation", ["ones", "zeros"])
@pytest.mark.parametrize(
"dtype", ["float32", "float64", "complex64", "complex128"]
)
def test_dtype_specials(backend, creation, dtype):
import numpy as np
x = ar.do(creation, shape=(2, 3), like=backend)
if backend == "torch" and "complex" in dtype:
pytest.xfail("Pytorch doesn't support complex numbers yet...")
x = ar.astype(x, dtype)
assert ar.get_dtype_name(x) == dtype
x = ar.to_numpy(x)
assert isinstance(x, np.ndarray)
assert ar.get_dtype_name(x) == dtype
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize("real_dtype", ["float32", "float64"])
def test_complex_creation(backend, real_dtype):
if backend == "torch":
pytest.xfail("Pytorch doesn't support complex numbers yet...")
if (backend == "sparse") and (real_dtype == "float32"):
pytest.xfail(
"Bug in sparse where single precision isn't maintained "
"after scalar multiplication."
)
if (backend == "ctf") and (real_dtype == "float32"):
pytest.xfail(
"ctf currently doesn't preserve single precision when "
"multiplying by python scalars."
)
x = ar.do(
"complex",
ar.astype(
ar.do("random.uniform", size=(3, 4), like=backend), real_dtype
),
ar.astype(
ar.do("random.uniform", size=(3, 4), like=backend), real_dtype
),
)
assert (
ar.get_dtype_name(x)
== {"float32": "complex64", "float64": "complex128"}[real_dtype]
)
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize(
"dtype_in,dtype_out",
[
("float32", "float32"),
("float64", "float64"),
("complex64", "float32"),
("complex128", "float64"),
],
)
def test_real_imag(backend, dtype_in, dtype_out):
x = gen_rand((3, 4), backend, dtype_in)
re = ar.do("real", x)
im = ar.do("imag", x)
assert ar.infer_backend(re) == backend
assert ar.infer_backend(im) == backend
assert ar.get_dtype_name(re) == dtype_out
assert ar.get_dtype_name(im) == dtype_out
assert ar.do("allclose", ar.to_numpy(x).real, ar.to_numpy(re))
assert ar.do("allclose", ar.to_numpy(x).imag, ar.to_numpy(im))
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize(
"dtype",
["float32", "float64", "complex64", "complex128"],
)
def test_linalg_solve(backend, dtype):
if backend == "sparse":
pytest.xfail("Sparse doesn't support linear algebra yet...")
if backend == "paddle" and "complex" in dtype:
pytest.xfail(
"Paddle `linalg.solve` doesn't support complex numbers yet..."
)
A = gen_rand((4, 4), backend, dtype)
b = gen_rand((4, 1), backend, dtype)
x = ar.do("linalg.solve", A, b)
assert ar.do(
"allclose", ar.to_numpy(A @ x), ar.to_numpy(b), rtol=1e-3, atol=1e-6
)
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize(
"dtype",
["float32", "float64", "complex64", "complex128"],
)
def test_linalg_eigh(backend, dtype):
if backend == "sparse":
pytest.xfail("sparse doesn't support linalg.eigh yet.")
if backend == "dask":
pytest.xfail("dask doesn't support linalg.eigh yet.")
if backend == "mars":
pytest.xfail("mars doesn't support linalg.eigh yet.")
if (backend == "torch") and ("complex" in dtype):
pytest.xfail("Pytorch doesn't fully support complex yet.")
A = gen_rand((4, 4), backend, dtype)
A = A + ar.dag(A)
el, ev = ar.do("linalg.eigh", A)
B = (ev * ar.reshape(el, (1, -1))) @ ar.dag(ev)
assert ar.do("allclose", ar.to_numpy(A), ar.to_numpy(B), rtol=1e-3)
@pytest.mark.parametrize("backend", BACKENDS)
def test_pad(backend):
if backend == "sparse":
pytest.xfail("sparse doesn't support linalg.eigh yet.")
if backend == "mars":
pytest.xfail("mars doesn't support linalg.eigh yet.")
A = gen_rand((3, 4, 5), backend)
for pad_width, new_shape in [
# same pad before and after for every axis
(2, (7, 8, 9)),
# same pad for every axis
(((1, 2),), (6, 7, 8)),
# different pad for every axis
(((4, 3), (2, 4), (3, 2)), (10, 10, 10)),
]:
B = ar.do("pad", A, pad_width)
assert shape(B) == new_shape
assert ar.to_numpy(ar.do("sum", A)) == pytest.approx(
ar.to_numpy(ar.do("sum", B))
)
@pytest.mark.parametrize("backend", BACKENDS)
def test_register_function(backend):
x = ar.do("ones", shape=(2, 3), like=backend)
def direct_fn(x):
return 1
# first test we can provide the function directly
ar.register_function(backend, "test_register", direct_fn)
assert ar.do("test_register", x) == 1
def wrap_fn(fn):
def new_fn(*args, **kwargs):
res = fn(*args, **kwargs)
return res + 1
return new_fn
# then check we can wrap the old (previous) function
ar.register_function(backend, "test_register", wrap_fn, wrap=True)
assert ar.do("test_register", x) == 2
@pytest.mark.parametrize("backend", BACKENDS)
def test_take(backend):
if backend in {"sparse", "paddle"}:
pytest.xfail(f"{backend} doesn't fully support take yet")
num_inds = 4
A = gen_rand((2, 3, 4), backend)
if backend == "jax": # gen_rand doesn't work with ints for JAX
ind = gen_rand((num_inds,), "numpy", dtype="int64")
else:
ind = gen_rand((num_inds,), backend, dtype="int64")
# Ensure indices are of dtype 'int32'
ind = ind.astype('int32')
# Take along axis 1, and check if result makes sense
B = ar.do("take", A, ind, axis=1)
assert shape(B) == (2, 4, 4)
for i in range(num_inds):
assert ar.do(
"allclose", ar.to_numpy(A[:, ind[0], :]), ar.to_numpy(B[:, 0, :])
)
assert ar.infer_backend(A) == ar.infer_backend(B)
@pytest.mark.parametrize("backend", BACKENDS)
def test_concatenate(backend):
mats = [gen_rand((2, 3, 4), backend) for _ in range(3)]
# Concatenate along axis 1, check if shape is correct
# also check if automatically inferring backend works
mats_concat1 = ar.do("concatenate", mats, axis=1)
mats_concat2 = ar.do("concatenate", mats, axis=1, like=backend)
assert shape(mats_concat1) == shape(mats_concat2) == (2, 9, 4)
assert (
backend
== ar.infer_backend(mats_concat1)
== ar.infer_backend(mats_concat2)
)
@pytest.mark.parametrize("backend", BACKENDS)
def test_stack(backend):
mats = [gen_rand((2, 3, 4), backend) for _ in range(3)]
# stack, creating a new axis (at position 0)
# also check if automatically inferring backend works
mats_stack1 = ar.do("stack", mats)
mats_stack2 = ar.do("stack", mats, like=backend)
assert shape(mats_stack1) == shape(mats_stack2) == (3, 2, 3, 4)
assert (
backend
== ar.infer_backend(mats_stack1)
== ar.infer_backend(mats_stack2)
)
@pytest.mark.parametrize("backend", BACKENDS)
def test_einsum(backend):
A = gen_rand((2, 3, 4), backend)
B = gen_rand((3, 4, 2), backend)
C1 = ar.do("einsum", "ijk,jkl->il", A, B, like=backend)
C2 = ar.do("einsum", "ijk,jkl->il", A, B)
if backend not in ("torch", "tensorflow", "paddle"):
# interleaved syntax is not supported
C3 = ar.do("einsum", A, [0, 1, 2], B, [1, 2, 3], [0, 3])
else:
C3 = C1
C4 = ar.do("reshape", A, (2, 12)) @ ar.do("reshape", B, (12, 2))
assert shape(C1) == shape(C2) == shape(C3) == (2, 2)
assert ar.do("allclose", ar.to_numpy(C1), ar.to_numpy(C4))
assert ar.do("allclose", ar.to_numpy(C2), ar.to_numpy(C4))
assert ar.do("allclose", ar.to_numpy(C3), ar.to_numpy(C4))
assert (
ar.infer_backend(C1)
== ar.infer_backend(C2)
== ar.infer_backend(C3)
== ar.infer_backend(C4)
== backend
)
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize("int_or_section", ["int", "section", "empty"])
def test_split(backend, int_or_section):
if backend == "sparse":
pytest.xfail("sparse doesn't support split yet")
if backend == "dask":
pytest.xfail("dask doesn't support split yet")
A = ar.do("ones", (10, 20, 10), like=backend)
if int_or_section == "section":
sections = [2, 4, 14]
splits = ar.do("split", A, sections, axis=1)
assert len(splits) == 4
assert ar.shape(splits[3]) == (10, 6, 10)
elif int_or_section == "empty":
splits = ar.do("split", A, [], axis=1)
assert len(splits) == 1
assert ar.shape(splits[0]) == (10, 20, 10)
else:
splits = ar.do("split", A, 5, axis=2)
assert len(splits) == 5
assert ar.shape(splits[2]) == (10, 20, 2)
@pytest.mark.parametrize("backend", BACKENDS)
def test_where(backend):
if backend in {"sparse", "paddle"}:
pytest.xfail(f"{backend} doesn't fully support `where` yet")
A = ar.do("arange", 10, like=backend)
B = ar.do("arange", 10, like=backend) + 1
C = ar.do("stack", [A, B])
D = ar.do("where", C < 5)
if backend == "dask":
for x in D:
x.compute_chunk_sizes()
for x in D:
assert ar.to_numpy(x).shape == (9,)
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize("dtype_str", ["float32", "float64"])
@pytest.mark.parametrize(
"fn", ["random.normal", "random.uniform", "zeros", "ones", "eye"]
)
@pytest.mark.parametrize("str_or_backend", ("str", "backend"))
def test_dtype_kwarg(backend, dtype_str, fn, str_or_backend):
if str_or_backend == "str":
dtype = dtype_str
else:
dtype = ar.to_backend_dtype(dtype_str, like=backend)
if fn in ("random.normal", "random.uniform"):
A = ar.do(fn, size=(10, 5), dtype=dtype, like=backend)
elif fn in ("zeros", "ones"):
A = ar.do(fn, shape=(10, 5), dtype=dtype, like=backend)
else: # fn = 'eye'
A = ar.do(fn, 10, dtype=dtype, like=backend)
assert shape(A) == (10, 10)
A = ar.do(fn, 10, 5, dtype=dtype, like=backend)
assert shape(A) == (10, 5)
assert ar.get_dtype_name(A) == dtype_str
@pytest.mark.parametrize("backend", BACKENDS)
def test_get_common_dtype(backend):
x = ar.do("ones", (1,), like=backend, dtype="complex64")
y = ar.do("ones", (1,), like=backend, dtype="float64")
assert ar.get_common_dtype(x, y) == "complex128"
@pytest.mark.parametrize("backend", BACKENDS)
def test_backend_like(backend):
assert ar.get_backend() is None
ar.set_backend("test")
assert ar.get_backend() == "test"
ar.set_backend(None)
assert ar.get_backend() is None
with ar.backend_like(backend):
assert ar.get_backend() == backend
x = ar.do("ones", (2,), like=backend)
assert ar.infer_backend(x) == backend
assert ar.get_backend() is None
def test_nested_multihreaded_backend_like():
from autoray.autoray import choose_backend
from concurrent.futures import ThreadPoolExecutor
def foo(backend1, backend2):
bs = []
bs.append(
(
ar.get_backend(),
choose_backend("test", 1),
)
)
with ar.backend_like(backend1):
bs.append(
(
ar.get_backend(),
choose_backend("test", 1),
)
)
with ar.backend_like(backend2):
bs.append(
(
ar.get_backend(),
choose_backend("test", 1),
)
)
bs.append(
(
ar.get_backend(),
choose_backend("test", 1),
)
)
bs.append((ar.get_backend(), choose_backend("test", 1)))
return bs
b_exp = [("A", "A"), ("B", "B"), ("C", "C"), ("B", "B"), ("A", "A")]
with ar.backend_like("A"):
b = foo("B", "C")
assert b == b_exp
b_exp = [
("A", "A"),
("B", "B"),
(None, "builtins"),
("B", "B"),
("A", "A"),
]
with ar.backend_like("A"):
b = foo("B", None)
assert b == b_exp
with ThreadPoolExecutor(3) as pool:
b_exp = [(None, "A"), ("B", "B"), ("C", "C"), ("B", "B"), (None, "A")]
with ar.backend_like("A"):
bs = [pool.submit(foo, "B", "C") for _ in range(3)]
for b in bs:
assert b.result() == b_exp
b_exp = [(None, "A"), ("B", "B"), (None, "A"), ("B", "B"), (None, "A")]
with ar.backend_like("A"):
bs = [pool.submit(foo, "B", None) for _ in range(3)]
for b in bs:
assert b.result() == b_exp
def test_compose():
@ar.compose
def mycomposedfn(x, backend):
x = ar.do("exp", x, like=backend)
x = ar.do("log", x, like=backend)
return x
x = ar.do("ones", (2,), like="numpy")
y = ar.do("mycomposedfn", x)
assert ar.do("allclose", x, y)
y = mycomposedfn(x)
assert ar.do("allclose", x, y)
mycomposedfn.register("numpy", lambda x: 1)
y = ar.do("mycomposedfn", x)
assert y == 1
y = mycomposedfn(x)
assert y == 1
@mycomposedfn.register("numpy")
def f(x):
return 2
y = ar.do("mycomposedfn", x)
assert y == 2
y = mycomposedfn(x)
assert y == 2
def test_builtins_complex():
re = 1.0
im = 2.0
z = ar.do("complex", re, im)
assert z == 1.0 + 2.0j
assert ar.infer_backend(z) == "builtins"
def test_shape_ndim_builtins():
import numpy as np
xs = [
1,
4.0,
7j,
(),
[],
[[]],
[np.ones(3), np.ones(3)],
np.ones((5, 4, 3)),
]
for x in xs:
assert ar.shape(x) == np.shape(x)
assert ar.ndim(x) == np.ndim(x)
@pytest.mark.parametrize("backend", BACKENDS)
def test_scipy_dispatching(backend):
if backend not in ["numpy", "cupy", "jax"]:
pytest.xfail("backend doesn't suport scipy.")
x = gen_rand((3, 3), backend=backend)
ar.do("scipy.linalg.expm", x)
def check_array_dtypes(x, y):
assert x.dtype == y.dtype
if hasattr(x, "device"):
assert x.device == y.device
@pytest.mark.parametrize("backend", BACKENDS)
@pytest.mark.parametrize(
"dtype", ["float32", "float64", "complex64", "complex128"]
)
class TestCreationRoutines:
def test_empty_passes_dtype_device(self, backend, dtype):
if backend in ("tensorflow",):
pytest.xfail(f"{backend} doesn't support empty yet.")
x = gen_rand((1,), backend, dtype)
y = ar.do("empty", (2, 3), like=x)
check_array_dtypes(x, y)
def test_eye_passes_dtype_device(self, backend, dtype):
if backend == "paddle" and "complex" in dtype:
pytest.xfail("Paddle doesn't support complex eye yet.")
x = gen_rand((1,), backend, dtype)
y = ar.do("eye", 3, like=x)
check_array_dtypes(x, y)
def test_full_passes_dtype_device(self, backend, dtype):
if backend in ("tensorflow",):
pytest.xfail(f"{backend} doesn't support full yet.")
x = gen_rand((1,), backend, dtype)
y = ar.do("full", (2, 3), 7, like=x)
check_array_dtypes(x, y)
def test_identity_passes_dtype_device(self, backend, dtype):
if backend == "paddle" and "complex" in dtype:
pytest.xfail("Paddle doesn't support complex identity yet.")
x = gen_rand((1,), backend, dtype)
y = ar.do("identity", 4, like=x)
check_array_dtypes(x, y)
def test_ones_passes_dtype_device(self, backend, dtype):
x = gen_rand((1,), backend, dtype)
y = ar.do("ones", (2, 3), like=x)
check_array_dtypes(x, y)
def test_zeros_passes_dtype_device(self, backend, dtype):
x = gen_rand((1,), backend, dtype)
y = ar.do("zeros", (2, 3), like=x)
check_array_dtypes(x, y)
# def test_arange_passes_dtype_device(self, backend, dtype):
# if backend in ("sparse",):
# pytest.xfail("Sparse doesn't support arange yet.")
# if backend == "torch" and "complex" in dtype:
# pytest.xfail("torch.arange doesn't support complex numbers yet.")
# if backend == "tensorflow" and "complex" in dtype:
# pytest.xfail("torch.arange doesn't support complex numbers yet.")
# x = gen_rand((1,), backend, dtype)
# y = ar.do("arange", 1, 10, like=x)
# check_array_dtypes(x, y)
# def test_linspace_passes_dtype_device(self, backend, dtype):
# if backend in ("sparse", "tensorflow"):
# pytest.xfail(f"{backend} doesn't support linspace yet.")
# x = gen_rand((1,), backend, dtype)
# y = ar.do("linspace", 10, 20, 11, like=x)
# check_array_dtypes(x, y)
# def test_logspace_passes_dtype_device(self, backend, dtype):
# if backend in ("sparse", "tensorflow"):
# pytest.xfail(f"{backend} doesn't support logspace yet.")
# x = gen_rand((1,), backend, dtype)
# if backend not in {"dask"}:
# y = ar.do("logspace", 10, 20, 11, like=x)
# check_array_dtypes(x, y)
# def test_geomspace_passes_dtype_device(self, backend, dtype):
# if backend in ("sparse", "tensorflow"):
# pytest.xfail(f"{backend} doesn't support logspace yet.")
# x = gen_rand((1,), backend, dtype)
# if backend not in {"dask"}:
# y = ar.do("logspace", 10, 20, 11, like=x)
# check_array_dtypes(x, y)
creation_funcs_with_args = [
("empty", ((2, 3),)),
("eye", (4,)),
("full", ((2, 3), 7)),
("identity", (4,)),
("ones", ((2, 3),)),
("zeros", ((2, 3),)),
]
creation_builtins = [
(float, [np.float64]),
(int, [np.int32, np.int64]), # np.int32 on Windows and np.int64 else
(complex, [np.complex128]),
]
@pytest.mark.parametrize("fn, args", creation_funcs_with_args)
@pytest.mark.parametrize("dtype, expected", creation_builtins)
def test_creation_with_builtins(fn, args, dtype, expected):
x = dtype(4)
y = ar.do(fn, *args, like=x)
assert y.dtype in expected
@pytest.mark.parametrize("backend", BACKENDS)
def test_indices(backend):
if backend == "sparse":
pytest.xfail("Sparse doesn't support `indices` function yet.")
from numpy.testing import assert_array_equal
x = ar.do("indices", (3, 4), like=backend)
xn = ar.to_numpy(x)
xe = ar.do("indices", (3, 4), like="numpy")
assert_array_equal(xn, xe)
|