1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
|
"""
AUTORAY - backend agnostic array operations.
Copyright 2019-2023 Johnnie Gray
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import contextlib
import functools
import importlib
import itertools
import math
import threading
from collections import OrderedDict, defaultdict
from inspect import signature
def do(fn, *args, like=None, **kwargs):
"""Do function named ``fn`` on ``(*args, **kwargs)``, peforming single
dispatch to retrieve ``fn`` based on whichever library defines the class of
the ``args[0]``, or the ``like`` keyword argument if specified.
Examples
--------
Works on numpy arrays:
>>> import numpy as np
>>> x_np = np.random.uniform(size=[5])
>>> y_np = do('sqrt', x_np)
>>> y_np
array([0.32464973, 0.90379787, 0.85037325, 0.88729814, 0.46768083])
>>> type(y_np)
numpy.ndarray
Works on cupy arrays:
>>> import cupy as cp
>>> x_cp = cp.random.uniform(size=[5])
>>> y_cp = do('sqrt', x_cp)
>>> y_cp
array([0.44541656, 0.88713113, 0.92626237, 0.64080557, 0.69620767])
>>> type(y_cp)
cupy.core.core.ndarray
Works on tensorflow arrays:
>>> import tensorflow as tf
>>> x_tf = tf.random.uniform(shape=[5])
>>> y_tf = do('sqrt', x_tf)
>>> y_tf
<tf.Tensor 'Sqrt_1:0' shape=(5,) dtype=float32>
>>> type(y_tf)
tensorflow.python.framework.ops.Tensor
You get the idea.
For functions that don't dispatch on the first argument you can use the
``like`` keyword:
>>> do('eye', 3, like=x_tf)
<tf.Tensor: id=91, shape=(3, 3), dtype=float32>
"""
backend = _choose_backend(fn, args, kwargs, like=like)
func = get_lib_fn(backend, fn)
return func(*args, **kwargs)
# ------------------------- efficiently dispatching ------------------------- #
def _default_infer_from_sig(fn, *args, **kwargs):
"""This is the default backend dispatcher, used if no global backend has
been set. Hot swapping this function out as below avoids having to check
manually for a global backend or worse, a thread aware global backend, on
every call to ``do``.
"""
return _DISPATCHERS[fn](*args, **kwargs)
_global_backend = None
_inferrer_global = _default_infer_from_sig
# this is the function that autoray uses when `do` is called without an
# explicit like/backend argument. It is set to `_default_infer_from_sig` by
# default, but can be set to `_always_the_same` if a global backend is set e.g.
_infer_auto = _inferrer_global
# if a thread that isn't the 'importing' thread tries to set a backend, this
# by default turns on thread aware dispatching, but once such custom sub
# backends have been reset, the global values above are used again.
_global_backends_threadaware = {}
_inferrers_threadaware = {}
_importing_thrid = threading.get_ident()
_backend_lock = threading.Lock()
def _default_infer_from_sig_threadaware(fn, args, kwargs):
# check for a thread aware inferrer, default to the global inferrer
thrid = threading.get_ident()
return _inferrers_threadaware.get(thrid, _inferrer_global)(
fn, args, kwargs
)
def _always_the_same(fn, args, kwargs, backend):
return backend
def get_backend(get_globally="auto"):
"""Return the universally set backend, if any.
Parameters
----------
get_globally : {"auto", False, True}, optional
Which backend to return:
- True: return the globally set backend, if any.
- False: return the backend set for the current thread, if any.
- "auto": return the globally set backend, if this thread is the thread
that imported autoray. Otherwise return the backend set for the
current thread, if any.
Returns
-------
backend : str or None
The name of the backend, or None if no backend is set.
"""
if get_globally == "auto":
get_globally = threading.get_ident() == _importing_thrid
if get_globally:
backend = _global_backend
else:
thrid = threading.get_ident()
backend = _global_backends_threadaware.get(thrid, None)
return backend
def set_backend(like, set_globally="auto"):
"""Set a default global backend. The argument ``like`` can be an explicit
backend name or an ``array``.
Parameters
----------
like : str or array
The backend to set. If an array, the backend of the array's class will
be set.
set_globally : {"auto", False, True}, optional
Whether to set the backend globally or for the current thread:
- True: set the backend globally.
- False: set the backend for the current thread.
- "auto": set the backend globally if this thread is the thread that
imported autoray. Otherwise set the backend for the current thread.
Only one thread should ever call this function with
``set_globally=True``, (by default this is importing thread).
"""
global _global_backend
global _infer_auto
global _inferrer_global
if like is None:
backend = None
inferrer = _default_infer_from_sig
elif isinstance(like, str):
backend = like
inferrer = functools.partial(_always_the_same, backend=backend)
else:
backend = _infer_class_backend_cached(like.__class__)
inferrer = functools.partial(_always_the_same, backend=backend)
if set_globally == "auto":
set_globally = threading.get_ident() == _importing_thrid
if set_globally:
_global_backend = backend
_inferrer_global = inferrer
if not _inferrers_threadaware:
# only revert the actual function if no subthread backends set
_infer_auto = inferrer
else:
thrid = threading.get_ident()
_backend_lock.acquire()
if backend is None:
_global_backends_threadaware.pop(thrid)
_inferrers_threadaware.pop(thrid)
else:
_global_backends_threadaware[thrid] = backend
_inferrers_threadaware[thrid] = inferrer
if _inferrers_threadaware:
# a subthread backend has been set, so we need to be thread aware
_infer_auto = _default_infer_from_sig_threadaware
else:
# no subthread backend has been set anymore, so we can ignore
# threads and just use the global inferrer
_infer_auto = _inferrer_global
_backend_lock.release()
@contextlib.contextmanager
def backend_like(like, set_globally="auto"):
"""Context manager for setting a default backend. The argument ``like`` can
be an explicit backend name or an ``array`` to infer it from.
Parameters
----------
like : str or array
The backend to set. If an array, the backend of the array's class will
be set.
set_globally : {"auto", False, True}, optional
Whether to set the backend globally or for the current thread:
- True: set the backend globally.
- False: set the backend for the current thread.
- "auto": set the backend globally if this thread is the thread that
imported autoray. Otherwise set the backend for the current thread.
Only one thread should ever call this function with
``set_globally=True``, (by default this is importing thread).
"""
if set_globally == "auto":
set_globally = threading.get_ident() == _importing_thrid
old_backend = get_backend(get_globally=set_globally)
try:
set_backend(like, set_globally)
yield
finally:
set_backend(old_backend, set_globally)
_CUSTOM_BACKENDS = {}
def register_backend(cls, name):
"""Register the name (and by default the module or submodule) of a custom
array class.
Parameters
----------
cls : type
The array class itself.
name : str
The name of the backend that should be used for this class. By default
this wil be assumed to be the location of the relevant functions for
this class, but this can be overridden.
"""
if not isinstance(cls, type):
raise TypeError("The array class itself should be supplied.")
global _CUSTOM_BACKENDS
_CUSTOM_BACKENDS[cls] = name
@functools.lru_cache(None)
def _infer_class_backend_cached(cls):
try:
import numpy as _numpy
if issubclass(cls, _numpy.ndarray):
return "numpy"
except ImportError:
# numpy not installed
pass
if cls in _CUSTOM_BACKENDS:
return _CUSTOM_BACKENDS[cls]
lib = cls.__module__.split(".")[0]
# check if lib should mapped entirely to another lib
backend = _BACKEND_ALIASES.get(lib, lib)
return backend
def infer_backend(array):
"""Get the name of the library that defined the class of ``array`` - unless
``array`` is directly a subclass of ``numpy.ndarray``, in which case assume
``numpy`` is the desired backend.
"""
return _infer_class_backend_cached(array.__class__)
multi_class_priorities = {
"builtins": -2,
"numpy": -1,
"autoray.lazy": 1,
}
@functools.lru_cache(None)
def _infer_class_backend_multi_cached(classes):
return max(
map(_infer_class_backend_cached, classes),
key=lambda n: multi_class_priorities.get(n, 0),
)
def infer_backend_multi(*arrays):
"""Infer which backend should be used for a function that takes multiple
arguments. This assigns a priority to each backend, and returns the backend
with the highest priority. By default, the priority is:
- ``builtins``: -2
- ``numpy``: -1
- other backends: 0
- ``autoray.lazy``: 1
I.e. when mixing with ``numpy``, other array libraries are preferred, when
mixing with ``autoray.lazy``, ``autoray.lazy`` is preferred. This has quite
low overhead due to caching.
"""
return _infer_class_backend_multi_cached(
tuple(array.__class__ for array in arrays)
)
# the set of functions that create new arrays, with `dtype` and possibly
# `device` kwargs, that should be inferred from the like argument
_CREATION_ROUTINES = {
"empty",
"eye",
"full",
"identity",
"ones",
"zeros",
# TODO: should these be included?
# "arange",
# "geomspace",
# "linspace",
# "logspace",
}
# cache for whether backends have a device attribute
_CREATION_INJECT = {}
def register_creation_routine(
backend, fn, inject_dtype=True, inject_device=False
):
"""Register a function that creates a new array, with `dtype` and possibly
`device` kwargs, that should be inferred from the like argument. This is
not necessary for array creation routines that don't accept either.
Parameters
----------
backend : str
The backend to register the function for.
fn : str
The name of the function to register.
inject_dtype : bool, optional
Whether to inject a `dtype` argument based on the `like` argument.
inject_device : bool, optional
Whether to inject a `device` argument based on the `like` argument.
"""
_CREATION_INJECT[backend, fn] = (inject_dtype, inject_device)
def _choose_backend(fn, args, kwargs, like=None):
"""Private function to choose a backend based on function name and
signature, which passes args and kwargs by reference for performance and
also to allow injection of dtype and device arguments for array creation
routines.
"""
if like is None:
# infer from function call (or global backend)
return _infer_auto(fn, args, kwargs)
elif isinstance(like, str):
# explicit backend
return like
else:
# explicit example array
backend = _infer_class_backend_cached(like.__class__)
# check if we should set some extra defaults based on the example array
if fn in _CREATION_ROUTINES:
try:
inject_dtype, inject_device = _CREATION_INJECT[backend, fn]
except KeyError:
# default to just dtype (e.g. for numpy)
inject_dtype = True
inject_device = False
_CREATION_INJECT[backend, fn] = (inject_dtype, inject_device)
if inject_dtype:
kwargs.setdefault("dtype", getattr(like, "dtype", type(like)))
if inject_device:
kwargs.setdefault("device", like.device)
return backend
def choose_backend(fn, *args, like=None, **kwargs):
"""Choose a backend based on function name, arguments, and the ``like``
keyword argument. The default, if ``like`` is not specified, is to infer
the backend from the function call, the default of which is simply to use
the first argument, if no custom dispatcher is found. Otherwise the
backend is chosen based on the ``like`` argument - which can be an explicit
backend name or an arbitrary object.
"""
return _choose_backend(fn, args, kwargs, like=like)
# ------------------- importing and caching the function -------------------- #
# lookup for mapping entire lib to another
_BACKEND_ALIASES = {}
# global (non function specific) aliases
_MODULE_ALIASES = {}
# lookup for when functions are elsewhere than the expected location
_SUBMODULE_ALIASES = {}
# lookup for when functions are simply called something else
_FUNC_ALIASES = {}
# custom wrappers for when functions don't just have different location or
# name. For example, when kwargs need to be translated or results modified
_CUSTOM_WRAPPERS = {}
# actual cache of funtions to use - this is populated lazily and can be used
# to directly set an implementation of a function for a specific backend
_FUNCS = {}
# these are functions where a default implementation can be constructed
# (composed of other functions), but this is only done lazily
_COMPOSED_FUNCTION_GENERATORS = {}
def import_lib_fn(backend, fn):
# first check explicitly composed functions -> if the function hasn't been
# called directly yet, it won't have been loaded into the cache, and needs
# generating before e.g. the ``do`` verrsion will work
if fn in _COMPOSED_FUNCTION_GENERATORS:
return _COMPOSED_FUNCTION_GENERATORS[fn](backend)
try:
# submodule where function is found for backend,
# e.g. ['tensorflow', trace'] -> 'tensorflow.linalg'
try:
full_location = _SUBMODULE_ALIASES[backend, fn]
# if explicit submodule alias given, don't use prepended location
# for example, ('torch', 'linalg.svd') -> torch.svd
only_fn = fn.split(".")[-1]
except KeyError:
full_location = backend
# move any prepended location into the full module path
# e.g. 'fn=linalg.eigh' -> ['linalg', 'eigh']
split_fn = fn.split(".")
full_location = ".".join([full_location] + split_fn[:-1])
only_fn = split_fn[-1]
# try aliases for global (not function specific) modules and
# submodules:
# e.g. 'decimal' -> 'math'
# e.g. 'cupy.scipy' -> 'cupyx.scipy'
# we don't do this if the function location has been explicitly
# give in _SUBMODULE_ALIASES, as that is already a full path
for k, v in _MODULE_ALIASES.items():
if full_location[: len(k)] == k:
full_location = full_location.replace(k, v, 1)
break
# cached lookup of custom name function might take
# e.g. ['tensorflow', 'sum'] -> 'reduce_sum'
fn_name = _FUNC_ALIASES.get((backend, fn), only_fn)
# import the function into the cache
try:
lib = importlib.import_module(full_location)
except ImportError:
if "." in full_location:
# sometimes libraries hack an attribute to look like submodule
mod, *submods = full_location.split(".")
lib = importlib.import_module(mod)
# also need to handle nested submodules
for submod in submods:
lib = getattr(lib, submod)
else:
# failed to import library at all -> catch + raise ImportError
raise AttributeError
# check for a custom wrapper but default to identity
wrapper = _CUSTOM_WRAPPERS.get((backend, fn), lambda fn: fn)
# store the function!
lib_fn = _FUNCS[backend, fn] = wrapper(getattr(lib, fn_name))
except AttributeError:
# check if there is a backup function (e.g. for older library version)
backend_alt = backend + "[alt]"
if backend_alt in _MODULE_ALIASES:
return import_lib_fn(backend_alt, fn)
raise ImportError(
f"autoray couldn't find function '{fn}' for "
f"backend '{backend.replace('[alt]', '')}'."
)
return lib_fn
def get_lib_fn(backend, fn):
"""Cached retrieval of correct function for backend, all the logic for
finding the correct funtion only runs the first time.
Parameters
----------
backend : str
The module defining the array class to dispatch on.
fn : str
The function to retrieve.
Returns
-------
callable
"""
try:
lib_fn = _FUNCS[backend, fn]
except KeyError:
lib_fn = import_lib_fn(backend, fn)
return lib_fn
# --------------------------- register your own! ---------------------------- #
def register_function(backend, name, fn, wrap=False):
"""Directly provide your own function.
Parameters
----------
backend : str
The name of the backend to register the function for.
name : str
Name of the function, e.g. `'sum'` or `'linalg.svd'`.
fn : callable
The function to register.
wrap : bool, optional
Whether to wrap the old function like ``fn(old_fn)`` rather than
directly supply the entire new function.
"""
if wrap:
old = get_lib_fn(backend, name)
_FUNCS[backend, name] = fn(old)
else:
_FUNCS[backend, name] = fn
# ------------------------------- tree utils -------------------------------- #
TREE_MAP_REGISTRY = {}
TREE_APPLY_REGISTRY = {}
TREE_ITER_REGISTRY = {}
def tree_register_container(cls, mapper, iterator, applier):
"""Register a new container type for use with ``tree_map`` and
``tree_apply``.
Parameters
----------
cls : type
The container type to register.
mapper : callable
A function that takes ``f``, ``tree`` and ``is_leaf`` and returns a new
tree of type ``cls`` with ``f`` applied to all leaves.
applier : callable
A function that takes ``f``, ``tree`` and ``is_leaf`` and applies ``f``
to all leaves in ``tree``.
"""
TREE_MAP_REGISTRY[cls] = mapper
TREE_ITER_REGISTRY[cls] = iterator
TREE_APPLY_REGISTRY[cls] = applier
IS_CONTAINER_CACHE = {}
def is_not_container(x):
"""The default function to determine if an object is a leaf. This simply
checks if the object is an instance of any of the registered container
types.
"""
try:
return IS_CONTAINER_CACHE[x.__class__]
except KeyError:
isleaf = not any(isinstance(x, cls) for cls in TREE_MAP_REGISTRY)
IS_CONTAINER_CACHE[x.__class__] = isleaf
return isleaf
def is_array(x):
"""An alternative leaf tester for addressing only arrays within trees."""
return hasattr(x, "shape")
def identity(f, tree, is_leaf):
return tree
TREE_MAPPER_CACHE = {}
def tree_map(f, tree, is_leaf=is_not_container):
"""Map ``f`` over all leaves in ``tree``, returning a new pytree.
Parameters
----------
f : callable
A function to apply to all leaves in ``tree``.
tree : pytree
A nested sequence of tuples, lists, dicts and other objects.
is_leaf : callable
A function to determine if an object is a leaf, ``f`` is only applied
to objects for which ``is_leaf(x)`` returns ``True``.
Returns
-------
pytree
"""
if is_leaf(tree):
return f(tree)
try:
return TREE_MAPPER_CACHE[tree.__class__](f, tree, is_leaf)
except KeyError:
# reverse so later registered classes take precedence
for cls, mapper in reversed(TREE_MAP_REGISTRY.items()):
if isinstance(tree, cls):
break
else:
# neither leaf nor container -> simply return it
mapper = identity
TREE_MAPPER_CACHE[tree.__class__] = mapper
return mapper(f, tree, is_leaf)
def empty(tree, is_leaf):
return iter(())
TREE_ITER_CACHE = {}
def tree_iter(tree, is_leaf=is_not_container):
"""Iterate over all leaves in ``tree``.
Parameters
----------
f : callable
A function to apply to all leaves in ``tree``.
tree : pytree
A nested sequence of tuples, lists, dicts and other objects.
is_leaf : callable
A function to determine if an object is a leaf, ``f`` is only applied
to objects for which ``is_leaf(x)`` returns ``True``.
"""
if is_leaf(tree):
yield tree
return
try:
yield from TREE_ITER_CACHE[tree.__class__](tree, is_leaf)
except KeyError:
# reverse so later registered classes take precedence
for cls, iterator in reversed(TREE_ITER_REGISTRY.items()):
if isinstance(tree, cls):
break
else:
# neither leaf nor container -> simply ignore it
iterator = empty
TREE_ITER_CACHE[tree.__class__] = iterator
yield from iterator(tree, is_leaf)
def nothing(f, tree, is_leaf):
pass
TREE_APPLIER_CACHE = {}
def tree_apply(f, tree, is_leaf=is_not_container):
"""Apply ``f`` to all leaves in ``tree``, no new pytree is built.
Parameters
----------
f : callable
A function to apply to all leaves in ``tree``.
tree : pytree
A nested sequence of tuples, lists, dicts and other objects.
is_leaf : callable
A function to determine if an object is a leaf, ``f`` is only applied
to objects for which ``is_leaf(x)`` returns ``True``.
"""
if is_leaf(tree):
f(tree)
return
try:
TREE_APPLIER_CACHE[tree.__class__](f, tree, is_leaf)
except KeyError:
# reverse so later registered classes take precedence
for cls, applier in reversed(TREE_APPLY_REGISTRY.items()):
if isinstance(tree, cls):
break
else:
# neither leaf nor container -> simply ignore it
applier = nothing
TREE_APPLIER_CACHE[tree.__class__] = applier
applier(f, tree, is_leaf)
class Leaf:
"""A singleton object to use as a placeholder in a pytree, for
unflattening.
"""
__slots__ = ()
def __repr__(self):
return "Leaf"
LEAF = Leaf()
def is_leaf_placeholder(x):
# don't do `x is LEAF` to allow pickling / unpickling
return x.__class__ is Leaf
def tree_flatten(tree, is_leaf=is_not_container, get_ref=False):
"""Flatten ``tree`` into a list of leaves.
Parameters
----------
tree : pytree
A nested sequence of tuples, lists, dicts and other objects.
is_leaf : callable
A function to determine if an object is a leaf, only objects for which
``is_leaf(x)`` returns ``True`` are returned in the flattened list.
get_ref : bool
If ``True``, a reference tree is also returned which can be used to
reconstruct the original tree from a flattened list.
Returns
-------
objs : list
The flattened list of leaf objects.
(ref_tree) : pytree
If ``get_ref`` is ``True``, a reference tree, with leaves of ``Leaf``,
is returned which can be used to reconstruct the original tree.
"""
objs = []
if get_ref:
# return a new tree with Leaf leaves, as well as the flattened list
def f(x):
objs.append(x)
return LEAF
ref_tree = tree_map(f, tree, is_leaf)
return objs, ref_tree
else:
tree_apply(objs.append, tree, is_leaf)
return objs
def tree_unflatten(objs, tree, is_leaf=is_leaf_placeholder):
"""Unflatten ``objs`` into a pytree of the same structure as ``tree``.
Parameters
----------
objs : sequence
A sequence of objects to be unflattened into a pytree.
tree : pytree
A nested sequence of tuples, lists, dicts and other objects, the objs
will be inserted into a new pytree of the same structure.
is_leaf : callable
A function to determine if an object is a leaf, only objects for which
``is_leaf(x)`` returns ``True`` will have the next item from ``objs``
inserted. By default checks for the ``Leaf`` object inserted by
``tree_flatten(..., get_ref=True)``.
Returns
-------
pytree
"""
objs = iter(objs)
return tree_map(lambda _: next(objs), tree, is_leaf)
def tree_map_tuple(f, tree, is_leaf):
return tuple(tree_map(f, x, is_leaf) for x in tree)
def tree_iter_tuple(tree, is_leaf):
for x in tree:
yield from tree_iter(x, is_leaf)
def tree_apply_tuple(f, tree, is_leaf):
for x in tree:
tree_apply(f, x, is_leaf)
tree_register_container(
tuple, tree_map_tuple, tree_iter_tuple, tree_apply_tuple
)
def tree_map_list(f, tree, is_leaf):
return [tree_map(f, x, is_leaf) for x in tree]
def tree_iter_list(tree, is_leaf):
for x in tree:
yield from tree_iter(x, is_leaf)
def tree_apply_list(f, tree, is_leaf):
for x in tree:
tree_apply(f, x, is_leaf)
tree_register_container(list, tree_map_list, tree_iter_list, tree_apply_list)
def tree_map_dict(f, tree, is_leaf):
return {k: tree_map(f, v, is_leaf) for k, v in tree.items()}
def tree_iter_dict(tree, is_leaf):
for v in tree.values():
yield from tree_iter(v, is_leaf)
def tree_apply_dict(f, tree, is_leaf):
for v in tree.values():
tree_apply(f, v, is_leaf)
tree_register_container(dict, tree_map_dict, tree_iter_dict, tree_apply_dict)
# --------------------------- composed functions ---------------------------- #
class Composed:
"""Compose an ``autoray.do`` using function. See the main wrapper
``compose``.
"""
def __init__(self, fn, name=None):
self._default_fn = fn
if name is None:
name = fn.__name__
self._name = name
self._supply_backend = "backend" in signature(fn).parameters
# this registers the fact that when `get_lib_fn` is called, the
# function can be created even if it doesn't exist for a specific
# backend yet.
_COMPOSED_FUNCTION_GENERATORS[self._name] = self.make_function
def register(self, backend, fn=None):
"""Register a different implementation for ``backend``."""
if fn is not None:
register_function(backend, self._name, fn)
else:
# wrapper form
def wrapper(fn):
register_function(backend, self._name, fn)
return fn
return wrapper
def make_function(self, backend):
"""Make a new function for the specific ``backend``."""
if self._supply_backend:
# make sure it inherits __name__ etc
fn = functools.wraps(self._default_fn)(
functools.partial(self._default_fn, backend=backend)
)
else:
fn = self._default_fn
self.register(backend, fn)
return fn
def __call__(self, *args, like=None, **kwargs):
backend = _choose_backend(self._name, args, kwargs, like=like)
# `get_lib_fn` will call `make_function` if the function doesn't exist
fn = get_lib_fn(backend, self._name)
return fn(*args, **kwargs)
def __repr__(self):
return f"Composed('{self._name}')"
def compose(fn, *, name=None):
"""Take a function consisting of multiple ``autoray.do`` calls and compose
it into a new, single, named function, registered with ``autoray.do``.
This creates a default implementation of this function for each new backend
encountered without explicitly having to write each out, but also allows
for specific implementations to be overridden for specific backends.
If the function takes a ``backend`` argument, it will be supplied with the
backend name, to save having to re-choose the backend.
Specific implementations can be provided by calling the ``register`` method
of the composed function, or it can itself be used like a decorator::
@compose
def foo(x):
...
@foo.register("numpy")
@numba.njit
def foo_numba(x):
...
Parameters
----------
fn : callable
The funtion to compose, and its default implementation.
name : str, optional
The name of the composed function. If not provided, the name of the
function will be used.
"""
if fn is None:
return functools.partial(compose, name=name)
return functools.wraps(fn)(Composed(fn, name))
# ---------------------- special top level functions ------------------------ #
@compose
def shape(x):
"""Get the shape of an array as a tuple of int. This should be preferred
to calling `x.shape` directly, as it:
1. Allows customization (e.g. for torch and aesara which return
different types for shape - use `@shape.register(backend)` to
customize the behavior from this default implementation).
2. Can be used on nested lists and tuples, without calling numpy.
Parameters
----------
x : array_like
The array to get the shape of. It can be an arbitrary nested list or
tuple of arrays and scalars, but is assumed not to be ragged.
Returns
-------
shape : tuple of int
The size of each dimension of the array.
"""
try:
return x.shape
except AttributeError:
# want to handle builtins / nested stuff
if isinstance(x, (list, tuple)):
d = len(x)
if d != 0:
# NB: slightly different from np.shape, as we do not check for
# ragged arrays, but that behavior is seemingly deprecated
return (d,) + shape(x[0])
return (d,)
return ()
@compose
def ndim(x):
"""Get the number of dimensions of an array. This should be preferred to
calling `x.ndim`, since not all backends implement that, and it can also be
called on nested lists and tuples.
Parameters
----------
x : array_like
The array to get the number of dimensions of. It can be an arbitrary
nested list or tuple of arrays and scalars.
Returns
-------
ndim : int
"""
try:
return x.ndim
except AttributeError:
return len(shape(x))
@compose
def size(x):
"""Get the size, or number of elements, of an array. This should be
preferred to calling `x.size`, since not all backends implement that, and
it can also be called on nested lists and tuples.
Parameters
----------
x : array_like
The array to get the size of. It can be an arbitrary nested list or
tuple of arrays and scalars.
Returns
-------
size : int
"""
try:
return x.size
except AttributeError:
return math.prod(shape(x))
def conj(x):
"""Array conjugate."""
return do("conj", x)
def transpose(x, *args):
"""Array transpose."""
return do("transpose", x, *args)
def dag(x):
"""Array Hermitian transpose."""
try:
return x.H
except AttributeError:
backend = _infer_class_backend_cached(x.__class__)
return do("conj", do("transpose", x, like=backend), like=backend)
def real(x):
"""Array real part."""
return do("real", x)
def imag(x):
"""Array imaginary part."""
return do("imag", x)
def reshape(x, shape):
"""Array reshaped."""
try:
return x.reshape(shape)
except AttributeError:
return do("reshape", x, shape)
def to_backend_dtype(dtype_name, like):
"""Turn string specifier ``dtype_name`` into dtype of backend ``like``."""
if not isinstance(like, str):
like = _infer_class_backend_cached(like.__class__)
try:
return get_lib_fn(like, dtype_name)
except ImportError:
return dtype_name
@compose
def get_dtype_name(x):
"""Find string specifier ``dtype_name`` of array ``x``."""
dtype = x.dtype
try:
return dtype.name
except AttributeError:
return str(dtype)
_COMPLEX_DTYPES = {"complex64", "complex128"}
_DOUBLE_DTYPES = {"float64", "complex128"}
_DTYPE_MAP = {
(False, False): "float32",
(False, True): "float64",
(True, False): "complex64",
(True, True): "complex128",
}
def get_common_dtype(*arrays):
"""Compute the minimal dtype sufficient for ``arrays``."""
dtypes = set(map(get_dtype_name, arrays))
has_complex = not _COMPLEX_DTYPES.isdisjoint(dtypes)
has_double = not _DOUBLE_DTYPES.isdisjoint(dtypes)
return _DTYPE_MAP[has_complex, has_double]
def astype(x, dtype_name, **kwargs):
"""Cast array as type ``dtype_name`` - tries ``x.astype`` first."""
dtype = to_backend_dtype(dtype_name, like=x)
try:
return x.astype(dtype, **kwargs)
except AttributeError:
return do("astype", x, dtype, **kwargs)
def to_numpy(x):
"""Get a numpy version of array ``x``."""
return do("to_numpy", x)
# -------------------------- some common wrappers --------------------------- #
def svd_not_full_matrices_wrapper(fn):
@functools.wraps(fn)
def default_not_full_matrices(*args, **kwargs):
kwargs.setdefault("full_matrices", False)
return fn(*args, **kwargs)
return default_not_full_matrices
def svd_sUV_to_UsVH_wrapper(fn):
@functools.wraps(fn)
def numpy_like(*args, **kwargs):
s, U, V = fn(*args, **kwargs)
return U, s, dag(V)
return numpy_like
def svd_UsV_to_UsVH_wrapper(fn):
@functools.wraps(fn)
def numpy_like(*args, **kwargs):
U, s, V = fn(*args, **kwargs)
return U, s, dag(V)
return numpy_like
def svd_manual_full_matrices_kwarg(fn):
@functools.wraps(fn)
def numpy_like(*args, full_matrices=False, **kwargs):
U, s, VH = fn(*args, **kwargs)
if not full_matrices:
U, VH = U[:, : s.size], VH[: s.size, :]
return U, s, VH
return numpy_like
def qr_allow_fat(fn):
@functools.wraps(fn)
def numpy_like(a, **kwargs):
m, n = shape(a)
if m >= n:
# square or thin
return fn(a, **kwargs)
Q, R_sq = fn(a[:, :m])
R_r = dag(Q) @ a[:, m:]
R = do("concatenate", (R_sq, R_r), axis=1, like=a)
return Q, R
return numpy_like
def tril_to_band_part(fn):
@functools.wraps(fn)
def numpy_like(x, k=0):
if k < 0:
raise ValueError(
"'k' must be positive to recreate 'numpy.tril' "
"behaviour with 'tensorflow.matrix_band_part'."
)
return fn(x, -1, k)
return numpy_like
def triu_to_band_part(fn):
@functools.wraps(fn)
def numpy_like(x, k=0):
if k > 0:
raise ValueError(
"'k' must be negative to recreate 'numpy.triu' "
"behaviour with 'tensorflow.matrix_band_part'."
)
return fn(x, -k, -1)
return numpy_like
def cholesky_lower(fn):
@functools.wraps(fn)
def cholesky_numpy_like(a):
return fn(a, lower=True)
return cholesky_numpy_like
def binary_allow_1d_rhs_wrap(fn):
@functools.wraps(fn)
def allow_1d_rhs(a, b):
need_to_convert = ndim(a) != ndim(b)
if need_to_convert:
b = reshape(b, (*shape(b), 1))
x = fn(a, b)
if need_to_convert:
x = reshape(x, shape(x)[:-1])
return x
return allow_1d_rhs
def scale_random_uniform_manually(fn):
@functools.wraps(fn)
def numpy_like(low=0.0, high=1.0, size=None, dtype=None, **kwargs):
if size is None:
size = ()
x = fn(size, **kwargs)
if (low != 0.0) or (high != 1.0):
x = (high - low) * x + low
if (dtype is not None) and get_dtype_name(x) != dtype:
x = astype(x, dtype)
return x
return numpy_like
def scale_random_normal_manually(fn):
@functools.wraps(fn)
def numpy_like(loc=0.0, scale=1.0, size=None, dtype=None, **kwargs):
if size is None:
size = ()
x = fn(size, **kwargs)
if (loc != 0.0) or (scale != 1.0):
x = scale * x + loc
if (dtype is not None) and get_dtype_name(x) != dtype:
x = astype(x, dtype)
return x
return numpy_like
def with_dtype_wrapper(fn):
"""Add ability to handle `dtype` keyword.
If not None, `dtype` should be specified as a string, otherwise conversion
will happen regardless.
"""
@functools.wraps(fn)
def with_dtype(*args, dtype=None, **kwargs):
A = fn(*args, **kwargs)
if (dtype is not None) and (dtype != get_dtype_name(A)):
A = astype(A, dtype)
return A
return with_dtype
def translate_wrapper(fn, translator):
"""Wrap a function to match the api of another according to a translation.
The ``translator`` entries in the form of an ordered dict should have
entries like:
(desired_kwarg: (backend_kwarg, default_value))
with the order defining the args of the function.
"""
@functools.wraps(fn)
def translated_function(*args, **kwargs):
new_kwargs = {}
translation = translator.copy()
# convert args, pairing them off with kwargs
for arg_value in args:
new_arg_name = translation.popitem(last=False)[1][0]
new_kwargs[new_arg_name] = arg_value
# convert kwargs - but only those in the translation
for key, value in kwargs.items():
try:
new_kwargs[translation.pop(key)[0]] = value
except KeyError:
new_kwargs[key] = value
# set remaining default kwargs
for opt in translation.values():
if len(opt) == 2:
# backend_name, default_value
new_kwargs[opt[0]] = opt[1]
# else, no default value -> don't inject
return fn(**new_kwargs)
return translated_function
def make_translator(t):
return functools.partial(translate_wrapper, translator=OrderedDict(t))
def complex_add_re_im(re, im):
return re + 1j * im
def allclose(x, y, rtol=1e-05, atol=1e-08):
return do("all", do("abs", x - y) <= atol + rtol * do("abs", y))
def _handle_size_to_shape(size=None):
if size is None:
return ()
try:
return tuple(size)
except TypeError:
return (size,)
# ----------------------------- Custom dispatchers -------------------------- #
def wrap_args_kwargs_from_raw(fn):
"""Take a function with signature ``(*args, **kwargs)`` and wrap it to
accept a single tuple of args and a dict of kwargs.
"""
@functools.wraps(fn)
def wrapped(args, kwargs):
return fn(*args, **kwargs)
return wrapped
def register_dispatch(fun, dispatcher, raw_signature=True):
"""Register a new dispatcher, a function that takes the arguments and
keyword arguments of a function and returns the backend to use, when the
backend is not explicitly given.
This is useful in case the backend to be used by a function cannot be
inferred from the first argument.
Parameters
----------
fun : str
The name of the function to register the dispatcher for.
dispatcher : callable
The dispatcher function to use. This should take the arguments and
keyword arguments of the function and return the backend to use.
raw_signature : bool, optional
The ``dispatcher`` has signature ``(*args, **kwargs)`` if ``True``,
otherwise it has signature ``(args, kwargs)``.
"""
if raw_signature:
dispatcher = wrap_args_kwargs_from_raw(dispatcher)
_DISPATCHERS[fun] = dispatcher
def default_dispatcher(args, kwargs):
"""Try to infer backend from first argument passed to function."""
try:
return _infer_class_backend_cached(args[0].__class__)
except IndexError:
raise TypeError("No args to infer backend from.")
# lookup of custom dispatcher methods, for cases when backend cannot be
# inferred accurately from first argument.
_DISPATCHERS = defaultdict(lambda: default_dispatcher)
def join_array_dispatcher(args, kwargs):
"""Dispatcher for functions where first argument is a sequence."""
try:
return _infer_class_backend_cached(args[0][0].__class__)
except (TypeError, ValueError):
# user passed an empty sequence, or something non-iterable
# try to infer backend from first argument as fallback
return _infer_class_backend_cached(args[0].__class__)
# List of functions listed in numpy API as array joining operations
register_dispatch("concatenate", join_array_dispatcher, raw_signature=False)
register_dispatch("stack", join_array_dispatcher, raw_signature=False)
register_dispatch("block", join_array_dispatcher, raw_signature=False)
register_dispatch("vstack", join_array_dispatcher, raw_signature=False)
register_dispatch("hstack", join_array_dispatcher, raw_signature=False)
register_dispatch("dstack", join_array_dispatcher, raw_signature=False)
register_dispatch("column_stack", join_array_dispatcher, raw_signature=False)
register_dispatch("row_stack", join_array_dispatcher, raw_signature=False)
def einsum_dispatcher(args, kwargs):
"""Dispatcher for handling einsum.
einsum can be called with a str equation as the first argument, or with
'interleaved' inputs. This dispatcher handles both cases and also takes
into account all arrays.
"""
return infer_backend_multi(*args)
register_dispatch("einsum", einsum_dispatcher, raw_signature=False)
def binary_dispatcher(args, kwargs):
"""There are cases when we want to take into account both backends of two
arguments, e.g. a lazy variable and a constant array.
"""
return infer_backend_multi(*args[:2])
register_dispatch("tensordot", binary_dispatcher, raw_signature=False)
register_dispatch("matmul", binary_dispatcher, raw_signature=False)
register_dispatch("multiply", binary_dispatcher, raw_signature=False)
register_dispatch("divide", binary_dispatcher, raw_signature=False)
register_dispatch("true_divide", binary_dispatcher, raw_signature=False)
register_dispatch("add", binary_dispatcher, raw_signature=False)
register_dispatch("subtract", binary_dispatcher, raw_signature=False)
# TODO: register other binary functions?
# --------------- object to act as drop-in replace for numpy ---------------- #
class InjectDtypeDevice:
"""Wrapper that injects defaultdtype and device arguments into a function"""
__slots__ = ("_fn", "_device", "_dtype")
def __init__(self, fn, device=None, dtype=None):
self._fn = fn
self._device = device
self._dtype = dtype
def __call__(self, *args, **kwargs):
if self._device is not None and "device" not in kwargs:
kwargs["device"] = self._device
if self._dtype is not None and "dtype" not in kwargs:
kwargs["dtype"] = self._dtype
return self._fn(*args, **kwargs)
def __repr__(self):
return (
f"InjectDtypeDevice(fn={self._fn}, "
f"device={self._device}, "
f"dtype={self._dtype})"
)
class AutoNamespace:
"""Mimics a namespace, optionally for a specific backend, device, and
dtype, caching the lookup of functions, and injecting default device and
dtype arguments for certain creation routines.
Parameters
----------
like : array_like, str, or None
The backend to use, or an object to infer the backend from. If None,
the default behavior is to use `autoray.do` and auto dispatch backend
at function call time. If given, the functions are cached at first
call.
device : str, optional
The device to use for the backend. If None, it will be inferred from
the `like` paramater is that is array-like or set to None.
dtype : str, optional
The dtype to use for the backend. If None, it will be inferred from
the `like` parameter if that is array-like or set to None.
submodule : str, optional
This is used internally when nesting attribute lookups, e.g.
`xp.random.normal`, `xp.linalg.eigh`.
"""
def __init__(
self,
like=None,
device=None,
dtype=None,
submodule=None,
):
if like is None:
# use autoray.do and auto dispatch
self._backend = None
elif isinstance(like, str):
# commit to a specific given backend
self._backend = like
else:
# commit to a specific backend inferred from array-like
self._backend = _infer_class_backend_cached(like.__class__)
if device is None:
if like is not None:
if hasattr(like, "device"):
device = like.device
self._device = device
if dtype is None:
if like is not None:
if hasattr(like, "dtype"):
dtype = like.dtype
self._dtype = dtype
self._submodule = submodule
def _get_submodule(self, name):
new = object.__new__(type(self))
new._backend = self._backend
new._device = self._device
new._dtype = self._dtype
new._submodule = name
return new
def _get_fn(self, name):
if self._submodule is not None:
# prepend the submodule name
name = f"{self._submodule}.{name}"
if name in ("random", "linalg"):
# note that other submodules can be accessed, these are just the
# ones with functions that we possibly want to translate
return self._get_submodule(name)
if self._backend is None:
# use autoray.do and auto dispatch
return functools.partial(do, name)
fn = get_lib_fn(self._backend, name)
# possibly wrap for dtype and device injection
if name in _CREATION_ROUTINES:
inject_dtype, inject_device = _CREATION_INJECT.get(
(self._backend, fn), (True, False)
)
if not inject_dtype:
# this is not a function accepts dtype
dtype_to_inject = None
else:
dtype_to_inject = self._dtype
if not inject_device:
# this is not a function accepts device
device_to_inject = None
else:
device_to_inject = self._device
if (dtype_to_inject is not None) or (device_to_inject is not None):
# only wrap if we actually inject something
fn = InjectDtypeDevice(fn, device_to_inject, dtype_to_inject)
return fn
def __getattribute__(self, name):
try:
return object.__getattribute__(self, name)
except AttributeError:
x = self._get_fn(name)
super().__getattribute__("__dict__")[name] = x
return x
def __repr__(self):
return (
f"{self.__class__.__name__}("
f"backend={self._backend}, "
f"device={self._device}, "
f"dtype={self._dtype}, "
f"submodule={self._submodule}"
")"
)
numpy = AutoNamespace()
def get_namespace(like=None, device=None, dtype=None, submodule=None):
"""Get an automatic namespace object.
If `like` is None, the namespace essentially provides an alternative syntax
to `do`, dispatching each function at calltime, and allowing the backend
and function implementations to be dynamically updated.
If `like` is supplied however, the backend is eagerly dispatched and
functions are loaded and cached specifically for that backend. In this
case, default `device` and `dtype` can also be specified for various array
creation routines, or if `like` is an array, inferred from that.
Parameters
----------
like : array-like, str or None, optional
An array-like object to dispatch on, an explicit backend name, or None.
device : str or None, optional
The device to use for array creation, or None to infer from `like`.
dtype : str or None, optional
The data type to use for array creation, or None to infer from `like`.
Returns
-------
AutoNamespace
An automatic namespace object.
"""
return AutoNamespace(
like=like,
device=device,
dtype=dtype,
submodule=submodule,
)
# --------------------------------------------------------------------------- #
# specific functions #
# --------------------------------------------------------------------------- #
# ------------------------------ standard-lib ------------------------------- #
_MODULE_ALIASES["decimal"] = "math"
_MODULE_ALIASES["builtins"] = "numpy"
_builtin_dtype_lookup = {
int: "int64",
float: "float64",
complex: "complex128",
}
@get_dtype_name.register("builtins")
def builtins_get_dtype_name(x):
return _builtin_dtype_lookup[x.__class__]
_FUNCS["builtins", "complex"] = complex
# ---------------------------------- numpy ---------------------------------- #
def numpy_to_numpy(x):
return do("asarray", x, like="numpy")
_MODULE_ALIASES["numpy.scipy"] = "scipy"
_FUNCS["numpy", "to_numpy"] = numpy_to_numpy
_FUNCS["numpy", "complex"] = complex_add_re_im
_FUNCS["builtins", "to_numpy"] = numpy_to_numpy
_SUBMODULE_ALIASES["numpy", "linalg.lu"] = "scipy.linalg"
_SUBMODULE_ALIASES["numpy", "linalg.expm"] = "scipy.linalg"
_CUSTOM_WRAPPERS["numpy", "linalg.svd"] = svd_not_full_matrices_wrapper
_CUSTOM_WRAPPERS["numpy", "random.normal"] = with_dtype_wrapper
_CUSTOM_WRAPPERS["numpy", "random.uniform"] = with_dtype_wrapper
# ---------------------------------- cupy ----------------------------------- #
def cupy_to_numpy(x): # pragma: no cover
return x.get()
_MODULE_ALIASES["cupy.scipy"] = "cupyx.scipy"
_FUNCS["cupy", "to_numpy"] = cupy_to_numpy
_FUNCS["cupy", "complex"] = complex_add_re_im
_CUSTOM_WRAPPERS["cupy", "linalg.svd"] = svd_not_full_matrices_wrapper
# ----------------------------------- jax ----------------------------------- #
def jax_to_numpy(x):
return do("asarray", x, like="numpy")
class JaxDefaultRNG:
"""Stateful but deterministic random number generator for JAX following
numpy's Generator API, compatible with `jax.jit`.
"""
def __init__(self, seed, **kwargs):
import jax
self.jax = jax
self.key = jax.random.key(seed, **kwargs)
def binomial(self, n, p, size=None, **kwargs):
self.key, subkey = self.jax.random.split(self.key)
shape = _handle_size_to_shape(size)
return self.jax.random.binomial(
subkey, n=n, p=p, shape=shape, **kwargs
)
def choice(self, a, size=None, replace=True, p=None, axis=0, **kwargs):
self.key, subkey = self.jax.random.split(self.key)
shape = _handle_size_to_shape(size)
return self.jax.random.choice(
subkey,
a,
shape=shape,
replace=replace,
p=p,
axis=axis,
**kwargs,
)
def exponential(self, scale=1.0, size=None, **kwargs):
self.key, subkey = self.jax.random.split(self.key)
shape = _handle_size_to_shape(size)
x = self.jax.random.exponential(subkey, shape=shape, **kwargs)
if scale != 1.0:
x *= scale
return x
def gumbel(self, loc=0.0, scale=1.0, size=None, **kwargs):
self.key, subkey = self.jax.random.split(self.key)
shape = _handle_size_to_shape(size)
x = self.jax.random.gumbel(subkey, shape=shape, **kwargs)
if scale != 1.0:
x *= scale
if loc != 0.0:
x += loc
return x
def integers(self, low, high=None, size=None, **kwargs):
self.key, subkey = self.jax.random.split(self.key)
shape = _handle_size_to_shape(size)
if high is None:
high = low
low = 0
return self.jax.random.randint(
subkey,
shape=shape,
minval=low,
maxval=high,
**kwargs,
)
def normal(self, loc=0.0, scale=1.0, size=None, **kwargs):
self.key, subkey = self.jax.random.split(self.key)
shape = _handle_size_to_shape(size)
x = self.jax.random.normal(subkey, shape=shape, **kwargs)
if scale != 1.0:
x *= scale
if loc != 0.0:
x += loc
return x
def permutation(self, x, **kwargs):
self.key, subkey = self.jax.random.split(self.key)
return self.jax.random.permutation(subkey, x, **kwargs)
def poisson(self, lam=1.0, size=None, **kwargs):
self.key, subkey = self.jax.random.split(self.key)
shape = _handle_size_to_shape(size)
x = self.jax.random.poisson(subkey, lam, shape=shape, **kwargs)
return x
def random(self, size=None, **kwargs):
return self.uniform(size=size, **kwargs)
def uniform(self, low=0.0, high=1.0, size=None, **kwargs):
self.key, subkey = self.jax.random.split(self.key)
shape = _handle_size_to_shape(size)
return self.jax.random.uniform(
subkey, shape=shape, minval=low, maxval=high, **kwargs
)
def jax_default_rng(seed, **kwargs):
if isinstance(seed, JaxDefaultRNG):
return seed
return JaxDefaultRNG(seed, **kwargs)
register_function("jax", "random.default_rng", jax_default_rng)
register_backend(JaxDefaultRNG, "jax")
_JAX_RANDOM_KEY = None
def jax_random_seed(seed=None):
from jax.random import PRNGKey
global _JAX_RANDOM_KEY
if seed is None:
from random import SystemRandom
seed = SystemRandom().randint(-(2**63), 2**63 - 1) # inclusive high
_JAX_RANDOM_KEY = PRNGKey(seed)
def jax_random_get_key():
from jax.random import split
global _JAX_RANDOM_KEY
if _JAX_RANDOM_KEY is None:
jax_random_seed()
_JAX_RANDOM_KEY, subkey = split(_JAX_RANDOM_KEY)
return subkey
def jax_random_uniform(low=0.0, high=1.0, size=None, **kwargs):
from jax.random import uniform
if size is None:
size = ()
return uniform(
jax_random_get_key(), shape=size, minval=low, maxval=high, **kwargs
)
def jax_random_normal(loc=0.0, scale=1.0, size=None, **kwargs):
from jax.random import normal
if size is None:
size = ()
x = normal(jax_random_get_key(), shape=size, **kwargs)
if scale != 1.0:
x *= scale
if loc != 0.0:
x += loc
return x
_BACKEND_ALIASES["jaxlib"] = "jax"
_MODULE_ALIASES["jax.scipy"] = "jax.scipy"
_MODULE_ALIASES["jax"] = "jax.numpy"
_SUBMODULE_ALIASES["jax", "complex"] = "jax.lax"
_SUBMODULE_ALIASES["jax", "linalg.expm"] = "jax.scipy.linalg"
_SUBMODULE_ALIASES["jax", "linalg.householder_product"] = "jax.lax.linalg"
# n.b. jax supports fat QR but not when computing gradients
_CUSTOM_WRAPPERS["jax", "linalg.qr"] = qr_allow_fat
_CUSTOM_WRAPPERS["jax", "linalg.svd"] = svd_not_full_matrices_wrapper
_FUNCS["jax", "to_numpy"] = jax_to_numpy
_FUNCS["jax", "random.seed"] = jax_random_seed
_FUNCS["jax", "random.uniform"] = jax_random_uniform
_FUNCS["jax", "random.normal"] = jax_random_normal
# --------------------------------- aesara ---------------------------------- #
@shape.register("aesara")
def aesara_shape(x):
return x.type.shape
_MODULE_ALIASES["aesara"] = "aesara.tensor"
_FUNCS["aesara", "shape"] = aesara_shape
# -------------------------------- autograd --------------------------------- #
_MODULE_ALIASES["autograd"] = "autograd.numpy"
_CUSTOM_WRAPPERS["autograd", "linalg.svd"] = svd_not_full_matrices_wrapper
_FUNCS["autograd", "complex"] = complex_add_re_im
# ---------------------------------- dask ----------------------------------- #
def dask_to_numpy(x):
return x.compute()
def dask_eye_wrapper(fn):
# Make M work as positional argument
@functools.wraps(fn)
def numpy_like(N, M=None, **kwargs):
return fn(N, M=M, **kwargs)
return numpy_like
_FUNCS["dask", "to_numpy"] = dask_to_numpy
_FUNCS["dask", "complex"] = complex_add_re_im
_FUNC_ALIASES["dask", "abs"] = "absolute"
_FUNC_ALIASES["dask", "identity"] = "eye"
_MODULE_ALIASES["dask"] = "dask.array"
_CUSTOM_WRAPPERS["dask", "linalg.svd"] = svd_manual_full_matrices_kwarg
_CUSTOM_WRAPPERS["dask", "linalg.cholesky"] = cholesky_lower
_CUSTOM_WRAPPERS["dask", "random.normal"] = with_dtype_wrapper
_CUSTOM_WRAPPERS["dask", "random.uniform"] = with_dtype_wrapper
_CUSTOM_WRAPPERS["dask", "eye"] = dask_eye_wrapper
# ---------------------------------- mars ----------------------------------- #
def mars_to_numpy(x):
return x.to_numpy()
_FUNCS["mars", "to_numpy"] = mars_to_numpy
_FUNCS["mars", "complex"] = complex_add_re_im
_MODULE_ALIASES["mars"] = "mars.tensor"
_CUSTOM_WRAPPERS["mars", "linalg.cholesky"] = cholesky_lower
# ----------------------------------- ctf ----------------------------------- #
def ctf_array(x):
return do("astensor", x, like="ctf")
def ctf_to_numpy(x):
return x.to_nparray()
def ctf_count_nonzero(x):
return (x != 0).astype(int).sum()
@get_dtype_name.register("ctf")
def ctf_get_dtype_name(x):
return x.dtype.__name__
_FUNCS["ctf", "array"] = ctf_array
_FUNCS["ctf", "complex"] = complex_add_re_im
_FUNCS["ctf", "allclose"] = allclose
_FUNCS["ctf", "to_numpy"] = ctf_to_numpy
_FUNCS["ctf", "count_nonzero"] = ctf_count_nonzero
_SUBMODULE_ALIASES["ctf", "float32"] = "numpy"
_SUBMODULE_ALIASES["ctf", "float64"] = "numpy"
_SUBMODULE_ALIASES["ctf", "complex64"] = "numpy"
_SUBMODULE_ALIASES["ctf", "complex128"] = "numpy"
_SUBMODULE_ALIASES["ctf", "linalg.svd"] = "ctf"
_SUBMODULE_ALIASES["ctf", "linalg.eigh"] = "ctf"
_SUBMODULE_ALIASES["ctf", "linalg.qr"] = "ctf"
_SUBMODULE_ALIASES["ctf", "linalg.norm"] = "ctf"
_FUNC_ALIASES["ctf", "random.uniform"] = "random"
_CUSTOM_WRAPPERS["ctf", "random.uniform"] = scale_random_uniform_manually
# ------------------------------- sparse------------------------------------- #
def sparse_array(x):
return do("COO.from_numpy", x, like="sparse")
def sparse_to_numpy(x):
return x.todense()
def sparse_transpose(x, axes=None):
return x.transpose(axes)
def sparse_reshape(x, shape):
return x.reshape(shape)
def sparse_sum(x, axis=None, keepdims=False, dtype=None, out=None):
return x.sum(axis=axis, keepdims=keepdims, dtype=dtype, out=out)
def sparse_prod(x, axis=None, keepdims=False, dtype=None, out=None):
return x.prod(axis=axis, keepdims=keepdims, dtype=dtype, out=out)
def sparse_conj(x):
return x.conj()
def sparse_real(x):
return x.real
def sparse_imag(x):
return x.imag
def sparse_count_nonzero(x):
return x.nnz
def sparse_random_uniform(low=0.0, high=1.0, size=None, dtype=None, **kwargs):
def rvs(nnz):
return do(
"random.uniform", low, high, (nnz,), dtype=dtype, like="numpy"
)
return do("random", size, data_rvs=rvs, **kwargs, like="sparse")
def sparse_random_normal(loc=0.0, scale=1.0, size=None, dtype=None, **kwargs):
def rvs(nnz):
return do(
"random.normal", loc, scale, (nnz,), dtype=dtype, like="numpy"
)
return do("random", size, data_rvs=rvs, **kwargs, like="sparse")
_FUNCS["sparse", "array"] = sparse_array
_FUNCS["sparse", "to_numpy"] = sparse_to_numpy
_FUNCS["sparse", "transpose"] = sparse_transpose
_FUNCS["sparse", "reshape"] = sparse_reshape
_FUNCS["sparse", "sum"] = sparse_sum
_FUNCS["sparse", "prod"] = sparse_prod
_FUNCS["sparse", "conj"] = sparse_conj
_FUNCS["sparse", "real"] = sparse_real
_FUNCS["sparse", "real"] = sparse_real
_FUNCS["sparse", "imag"] = sparse_imag
_FUNCS["sparse", "complex"] = complex_add_re_im
_FUNCS["sparse", "count_nonzero"] = sparse_count_nonzero
_FUNCS["sparse", "random.uniform"] = sparse_random_uniform
_FUNCS["sparse", "random.normal"] = sparse_random_normal
_FUNC_ALIASES["sparse", "identity"] = "eye"
# sparse uses numpys __array_func__ interface
for f in (
"log",
"log2",
"log10",
"exp",
"sqrt",
"sign",
"sin",
"cos",
"tan",
"arcsin",
"arccos",
"arctan",
"sinh",
"cosh",
"tanh",
"arcsinh",
"arccosh",
"arctanh",
"tensordot",
# NB put tensordot here, as sparse.tensordot can produce dense (numpy)
# arrays but errors when both inputs are dense - we want nested calls to
# tensordot to handle this
):
_SUBMODULE_ALIASES["sparse", f] = "numpy"
# ------------------------------- tensorflow -------------------------------- #
def tensorflow_to_numpy(x):
return x.numpy()
def tensorflow_indices(dimensions):
_meshgrid = get_lib_fn("tensorflow", "meshgrid")
_arange = get_lib_fn("tensorflow", "arange")
return _meshgrid(*map(_arange, dimensions), indexing="ij")
_MODULE_ALIASES["tensorflow.linalg"] = "tensorflow.linalg"
_MODULE_ALIASES["tensorflow.random"] = "tensorflow.random"
_MODULE_ALIASES["tensorflow"] = "tensorflow.experimental.numpy"
_FUNCS["tensorflow", "to_numpy"] = tensorflow_to_numpy
_FUNCS["tensorflow", "indices"] = tensorflow_indices
_FUNC_ALIASES["tensorflow", "astype"] = "cast"
_SUBMODULE_ALIASES["tensorflow", "cast"] = "tensorflow"
_SUBMODULE_ALIASES["tensorflow", "astype"] = "tensorflow"
_SUBMODULE_ALIASES["tensorflow", "complex"] = "tensorflow"
_CUSTOM_WRAPPERS["tensorflow", "linalg.svd"] = svd_sUV_to_UsVH_wrapper
_CUSTOM_WRAPPERS["tensorflow", "linalg.solve"] = binary_allow_1d_rhs_wrap
_CUSTOM_WRAPPERS["tensorflow", "random.uniform"] = make_translator(
[
("low", ("minval", 0.0)),
("high", ("maxval", 1.0)),
("size", ("shape", ())),
]
)
_CUSTOM_WRAPPERS["tensorflow", "random.normal"] = make_translator(
[
("loc", ("mean", 0.0)),
("scale", ("stddev", 1.0)),
("size", ("shape", ())),
]
)
def tensorflow_pad_wrap(tf_pad):
def numpy_like(array, pad_width, mode="constant", constant_values=0):
if mode != "constant":
raise NotImplementedError
try:
if len(pad_width) == 1:
pad_width = pad_width * ndim(array)
except TypeError:
pad_width = ((pad_width, pad_width),) * ndim(array)
return tf_pad(
array, pad_width, mode="CONSTANT", constant_values=constant_values
)
return numpy_like
_CUSTOM_WRAPPERS["tensorflow", "pad"] = tensorflow_pad_wrap
_SUBMODULE_ALIASES["tensorflow", "pad"] = "tensorflow"
register_creation_routine("tensorflow", "linspace", inject_dtype=False)
# ---------------------------------- torch ---------------------------------- #
@shape.register("torch")
def torch_shape(x):
# torch returns a Size object, we want tuple[int]
return tuple(map(int, x.shape))
@size.register("torch")
def torch_size(x):
return x.numel()
def torch_to_numpy(x):
return x.detach().cpu().numpy()
def torch_copy(x):
return x.detach().clone()
def torch_transpose(x, axes=None):
if axes is None:
axes = reversed(range(0, x.ndimension()))
return x.permute(*axes)
def torch_count_nonzero(x):
return do("sum", x != 0, like="torch")
def torch_astype(x, dtype):
return x.to(dtype=to_backend_dtype(dtype, like=x))
@functools.lru_cache(None)
def _torch_get_dtype_name(dtype):
return str(dtype).split(".")[-1]
@get_dtype_name.register("torch")
def torch_get_dtype_name(x):
return _torch_get_dtype_name(x.dtype)
def torch_real(x):
# torch doesn't support calling real on real arrays
try:
if x.is_complex():
return x.real
except AttributeError:
pass
return x
def torch_imag(x):
# torch doesn't support calling imag on real arrays
try:
if x.is_complex():
return x.imag
except AttributeError:
pass
return do("zeros_like", x)
def torch_linalg_solve_wrap(fn):
@binary_allow_1d_rhs_wrap
def numpy_like(a, b):
return fn(b, a)[0]
return numpy_like
def torch_linalg_eigh(x):
return tuple(do("symeig", x, eigenvectors=True, like="torch"))
def torch_linalg_eigvalsh(x):
return do("symeig", x, eigenvectors=False, like="torch")[0]
def torch_tensordot_wrap(fn):
@functools.wraps(fn)
def numpy_like(a, b, axes=2):
return fn(a, b, dims=axes)
return numpy_like
def torch_pad(array, pad_width, mode="constant", constant_values=0):
if mode != "constant":
raise NotImplementedError
try:
# numpy takes pads like ((0, 0), (1, 1), ... (n-1, n-1))
# torch takes pads like (n-1, n-1, n-2, n-2, n-3, n-3, ...)
pad = tuple(itertools.chain.from_iterable(pad_width))[::-1]
# a single tuple was specified ((a, b),) - use for all axes
if len(pad) == 2:
pad = pad * array.ndimension()
except TypeError:
# assume int
pad = (pad_width,) * 2 * array.ndimension()
return do(
"nn.functional.pad",
array,
pad=pad,
mode=mode,
value=constant_values,
like="torch",
)
def torch_split_wrap(fn):
# for torch >=1.8 we can use tensor_split instead, but in current stable
# release this function has not been added
@functools.wraps(fn)
def numpy_like(ary, indices_or_sections, axis=0, **kwargs):
if isinstance(indices_or_sections, int):
split_size = shape(ary)[axis] // indices_or_sections
return fn(ary, split_size, dim=axis, **kwargs)
else:
# torch.split doesn't support empty splits
if len(indices_or_sections) == 0:
return (ary,)
diff = do(
"diff",
indices_or_sections,
prepend=0,
append=shape(ary)[axis],
like="numpy",
)
diff = list(diff)
return fn(ary, diff, dim=axis)
return numpy_like
def torch_zeros_ones_wrap(fn):
@functools.wraps(fn)
def numpy_like(shape, dtype=None, **kwargs):
if dtype is not None:
dtype = to_backend_dtype(dtype, like="torch")
return fn(shape, dtype=dtype, **kwargs)
return numpy_like
def torch_eye_wrap(fn):
@functools.wraps(fn)
def numpy_like(N, M=None, dtype=None, **kwargs):
if dtype is not None:
dtype = to_backend_dtype(dtype, like="torch")
if M is not None:
return fn(N, m=M, dtype=dtype, **kwargs)
else:
return fn(N, dtype=dtype, **kwargs)
return numpy_like
def torch_sort_wrap(fn):
@functools.wraps(fn)
def numpy_like(a, axis=-1):
return fn(a, dim=axis)[0]
return numpy_like
def torch_indices(dimensions):
_meshgrid = get_lib_fn("torch", "meshgrid")
_arange = get_lib_fn("torch", "arange")
return _meshgrid(*map(_arange, dimensions), indexing="ij")
def torch_flip_wrap(torch_flip):
def numpy_like(x, axis=None):
if axis is None:
dims = tuple(range(x.ndimension()))
elif isinstance(axis, int):
dims = (axis,)
else:
# already tuple/list
dims = axis
return torch_flip(x, dims)
return numpy_like
class TorchDefaultRNG:
def __init__(self, seed, device=None):
import torch
self._torch = torch
self._generator = torch.Generator(device=device)
self._generator.manual_seed(seed)
# def binomial(self, n, p, size=None, **kwargs):
# raise NotImplementedError()
# def choice(self, a, size=None, replace=True, p=None, axis=0, **kwargs):
# raise NotImplementedError()
# def exponential(self, scale=1.0, size=None, **kwargs):
# raise NotImplementedError()
# def gumbel(self, loc=0.0, scale=1.0, size=None, **kwargs):
# raise NotImplementedError()
def integers(self, low, high=None, size=None, **kwargs):
if high is None:
high = low
low = 0
size = _handle_size_to_shape(size)
return self._torch.randint(
low, high, size, generator=self._generator, **kwargs
)
# def poisson(self, lam=1.0, size=None, **kwargs):
# raise NotImplementedError()
def normal(self, loc=0.0, scale=1.0, size=None, **kwargs):
size = _handle_size_to_shape(size)
x = self._torch.randn(size, generator=self._generator, **kwargs)
if scale != 1.0:
x = x * scale
if loc != 0.0:
x = x + loc
return x
def random(self, size=None, **kwargs):
size = _handle_size_to_shape(size)
return self._torch.rand(size, generator=self._generator, **kwargs)
def permutation(self, x, **kwargs):
if isinstance(x, int):
return self._torch.randperm(x, generator=self._generator, **kwargs)
axis = kwargs.get("axis", 0)
n = x.shape[axis]
perm_indices = self._torch.randperm(
n, generator=self._generator, device=x.device
)
return self._torch.index_select(x, axis, perm_indices)
def uniform(self, low=0.0, high=1.0, size=None, **kwargs):
size = _handle_size_to_shape(size)
x = self._torch.rand(size, generator=self._generator, **kwargs)
if low != 0.0 or high != 1.0:
x = x * (high - low) + low
return x
def torch_default_rng(seed, **kwargs):
if isinstance(seed, TorchDefaultRNG):
return seed
return TorchDefaultRNG(seed, **kwargs)
register_function("torch", "random.default_rng", torch_default_rng)
register_backend(TorchDefaultRNG, "torch")
_FUNCS["torch", "pad"] = torch_pad
_FUNCS["torch", "real"] = torch_real
_FUNCS["torch", "imag"] = torch_imag
_FUNCS["torch", "astype"] = torch_astype
_FUNCS["torch", "copy"] = torch_copy
_FUNCS["torch", "to_numpy"] = torch_to_numpy
_FUNCS["torch", "complex"] = complex_add_re_im
_FUNCS["torch", "transpose"] = torch_transpose
_FUNCS["torch", "count_nonzero"] = torch_count_nonzero
_FUNCS["torch", "indices"] = torch_indices
_FUNC_ALIASES["torch", "array"] = "tensor"
_FUNC_ALIASES["torch", "asarray"] = "as_tensor"
_FUNC_ALIASES["torch", "clip"] = "clamp"
_FUNC_ALIASES["torch", "concatenate"] = "cat"
_FUNC_ALIASES["torch", "conjugate"] = "conj"
_FUNC_ALIASES["torch", "equal"] = "eq"
_FUNC_ALIASES["torch", "expand_dims"] = "unsqueeze"
_FUNC_ALIASES["torch", "identity"] = "eye"
_FUNC_ALIASES["torch", "linalg.expm"] = "matrix_exp"
_FUNC_ALIASES["torch", "max"] = "amax"
_FUNC_ALIASES["torch", "min"] = "amin"
_FUNC_ALIASES["torch", "power"] = "pow"
_FUNC_ALIASES["torch", "random.normal"] = "randn"
_FUNC_ALIASES["torch", "random.uniform"] = "rand"
_FUNC_ALIASES["torch", "scipy.linalg.expm"] = "matrix_exp"
_FUNC_ALIASES["torch", "split"] = "tensor_split"
_FUNC_ALIASES["torch", "take"] = "index_select"
_FUNC_ALIASES["torch", "take_along_axis"] = "take_along_dim"
_SUBMODULE_ALIASES["torch", "linalg.expm"] = "torch"
_SUBMODULE_ALIASES["torch", "scipy.linalg.expm"] = "torch"
_SUBMODULE_ALIASES["torch", "random.normal"] = "torch"
_SUBMODULE_ALIASES["torch", "random.uniform"] = "torch"
_CUSTOM_WRAPPERS["torch", "clip"] = make_translator(
[("a", ("input",)), ("a_min", ("min",)), ("a_max", ("max",))]
)
_CUSTOM_WRAPPERS["torch", "concatenate"] = make_translator(
[("arrays", ("tensors",)), ("axis", ("dim", 0))]
)
_CUSTOM_WRAPPERS["torch", "diagonal"] = make_translator(
[("a", ("input",)), ("axis1", ("dim1", 0)), ("axis2", ("dim2", 1))]
)
_CUSTOM_WRAPPERS["torch", "empty"] = make_translator([("shape", ("size",))])
_CUSTOM_WRAPPERS["torch", "expand_dims"] = make_translator(
[("a", ("input",)), ("axis", ("dim",))]
)
_CUSTOM_WRAPPERS["torch", "eye"] = torch_eye_wrap
_CUSTOM_WRAPPERS["torch", "flip"] = torch_flip_wrap
_CUSTOM_WRAPPERS["torch", "linalg.svd"] = svd_not_full_matrices_wrapper
_CUSTOM_WRAPPERS["torch", "ones"] = torch_zeros_ones_wrap
_CUSTOM_WRAPPERS["torch", "random.normal"] = scale_random_normal_manually
_CUSTOM_WRAPPERS["torch", "random.uniform"] = scale_random_uniform_manually
_CUSTOM_WRAPPERS["torch", "sort"] = torch_sort_wrap
_CUSTOM_WRAPPERS["torch", "stack"] = make_translator(
[("arrays", ("tensors",)), ("axis", ("dim", 0))]
)
_CUSTOM_WRAPPERS["torch", "take"] = make_translator(
[("a", ("input",)), ("indices", ("index",)), ("axis", ("dim",))]
)
_CUSTOM_WRAPPERS["torch", "tensordot"] = torch_tensordot_wrap
_CUSTOM_WRAPPERS["torch", "tril"] = make_translator(
[("m", ("input",)), ("k", ("diagonal", 0))]
)
_CUSTOM_WRAPPERS["torch", "triu"] = make_translator(
[("m", ("input",)), ("k", ("diagonal", 0))]
)
_CUSTOM_WRAPPERS["torch", "zeros"] = torch_zeros_ones_wrap
_CUSTOM_WRAPPERS["torch", "take_along_axis"] = make_translator(
[("arr", ("input",)), ("indices", ("indices",)), ("axis", ("dim", -1))]
)
_torch_reduce_translation = [
("a", ("input",)),
("axis", ("dim",)),
("keepdims", ("keepdim",)),
]
for f in ("sum", "max", "min", "prod", "mean", "median", "std", "var"):
# TODO: search "keepdim" in torch docs to find more
_CUSTOM_WRAPPERS["torch", f] = make_translator(_torch_reduce_translation)
# for older versions of torch, can provide some alternative implementations
_MODULE_ALIASES["torch[alt]"] = "torch"
_FUNCS["torch[alt]", "linalg.eigh"] = torch_linalg_eigh
_FUNCS["torch[alt]", "linalg.eigvalsh"] = torch_linalg_eigvalsh
_SUBMODULE_ALIASES["torch[alt]", "linalg.norm"] = "torch"
_SUBMODULE_ALIASES["torch[alt]", "linalg.qr"] = "torch"
_SUBMODULE_ALIASES["torch[alt]", "linalg.solve"] = "torch"
_SUBMODULE_ALIASES["torch[alt]", "linalg.svd"] = "torch"
_CUSTOM_WRAPPERS["torch[alt]", "linalg.qr"] = qr_allow_fat
_CUSTOM_WRAPPERS["torch[alt]", "linalg.solve"] = torch_linalg_solve_wrap
_CUSTOM_WRAPPERS["torch[alt]", "linalg.svd"] = svd_UsV_to_UsVH_wrapper
_CUSTOM_WRAPPERS["torch[alt]", "split"] = torch_split_wrap
for f in _CREATION_ROUTINES:
register_creation_routine("torch", f, inject_device=True)
# ---------------------------------- mxnet ---------------------------------- #
def mxnet_to_numpy(x):
return x.asnumpy()
_MODULE_ALIASES["mxnet"] = "mxnet.numpy"
_FUNCS["mxnet", "to_numpy"] = mxnet_to_numpy
# --------------------------------- paddle ---------------------------------- #
_paddle_dtype_name_conversion = {
"BOOL": "bool",
"INT8": "int8",
"INT16": "int16",
"INT32": "int32",
"INT64": "int64",
"FP16": "float16",
"FP32": "float32",
"FP64": "float64",
"COMPLEX64": "complex64",
"COMPLEX128": "complex128",
}
@get_dtype_name.register("paddle")
def paddle_get_dtype_name(x):
return _paddle_dtype_name_conversion[x.dtype.name]
@shape.register("paddle")
def paddle_shape(x):
# convert from list
return tuple(x.shape)
def paddle_to_numpy(x):
return x.numpy()
def paddle_transpose(a, axes=None):
if axes is None:
axes = tuple(range(a.ndim - 1, -1, -1))
return a.transpose(perm=axes)
def paddle_real(x):
# paddle doesn't support calling real on real arrays
try:
if x.is_complex():
return x.real()
except AttributeError:
pass
return x
def paddle_imag(x):
# paddle doesn't support calling imag on real arrays
try:
if x.is_complex():
return x.imag()
except AttributeError:
pass
return do("zeros_like", x)
def paddle_indices(dimensions):
_meshgrid = get_lib_fn("paddle", "meshgrid")
_arange = get_lib_fn("paddle", "arange")
return _meshgrid(*map(_arange, dimensions), indexing="ij")
def paddle_ravel(x):
return x.reshape((-1,))
def paddle_pad(array, pad_width, mode="constant", constant_values=0):
if mode != "constant":
raise NotImplementedError
try:
# numpy takes pads like ((0, 0), (1, 1), ... (n-1, n-1))
# paddle takes pads like (0, 0, 1, 1, 2, 2, ...)
pad = tuple(itertools.chain.from_iterable(pad_width))
# a single tuple was specified ((a, b),) - use for all axes
if len(pad) == 2:
pad = pad * array.ndim
except TypeError:
# assume int
pad = (pad_width,) * 2 * array.ndim
return do(
"nn.functional.pad",
array,
pad=pad,
mode=mode,
value=constant_values,
like="paddle",
)
def paddle_wrap_reduction(fn):
def numpy_like(*args, **kwargs):
keepdims = kwargs.pop("keepdims", None)
if keepdims is not None:
kwargs["keepdim"] = keepdims
return fn(*args, **kwargs)
return numpy_like
def paddle_split_wrap(fn):
# paddle doesn't seem to have `tensor_split always`
@functools.wraps(fn)
def numpy_like(ary, indices_or_sections, axis=0, **kwargs):
if isinstance(indices_or_sections, int):
return fn(ary, indices_or_sections, axis=axis, **kwargs)
else:
diff = do(
"diff",
indices_or_sections,
prepend=0,
append=shape(ary)[axis],
like="numpy",
)
diff = list(diff)
return fn(ary, diff, axis=axis)
return numpy_like
_MODULE_ALIASES["paddle[alt]"] = "paddle"
_FUNCS["paddle", "to_numpy"] = paddle_to_numpy
_FUNCS["paddle", "transpose"] = paddle_transpose
_FUNCS["paddle", "real"] = paddle_real
_FUNCS["paddle", "imag"] = paddle_imag
_FUNCS["paddle", "indices"] = paddle_indices
_FUNCS["paddle", "ravel"] = paddle_ravel
_FUNCS["paddle", "pad"] = paddle_pad
_FUNC_ALIASES["paddle", "random.normal"] = "randn"
_FUNC_ALIASES["paddle", "random.uniform"] = "rand"
_FUNC_ALIASES["paddle", "asarray"] = "to_tensor"
_FUNC_ALIASES["paddle", "concatenate"] = "concat"
_FUNC_ALIASES["paddle", "power"] = "pow"
_FUNC_ALIASES["paddle", "identity"] = "eye"
_FUNC_ALIASES["paddle", "split"] = "tensor_split"
_SUBMODULE_ALIASES["paddle", "random.normal"] = "paddle"
_SUBMODULE_ALIASES["paddle", "random.uniform"] = "paddle"
_CUSTOM_WRAPPERS["paddle", "random.normal"] = scale_random_normal_manually
_CUSTOM_WRAPPERS["paddle", "random.uniform"] = scale_random_uniform_manually
_CUSTOM_WRAPPERS["paddle[alt]", "split"] = paddle_split_wrap
_CUSTOM_WRAPPERS["paddle", "tril"] = make_translator(
[("m", ("x",)), ("k", ("diagonal", 0))]
)
_CUSTOM_WRAPPERS["paddle", "triu"] = make_translator(
[("m", ("x",)), ("k", ("diagonal", 0))]
)
for f in ("sum", "max", "min", "prod", "mean", "std", "var"):
_CUSTOM_WRAPPERS["paddle", f] = paddle_wrap_reduction
# -------------------------------- pytensor --------------------------------- #
@shape.register("pytensor")
def pytensor_shape(x):
return x.type.shape
def pytensor_wrap_qr_with_shapes(fn):
import pytensor.tensor as pt
@functools.wraps(fn)
def qr_shaped(x, **kwargs):
*b, m, n = x.type.shape
k = min(m, n)
q, r = fn(x, mode="economic", **kwargs)
q = pt.specify_shape(q, (*b, m, k))
r = pt.specify_shape(r, (*b, k, n))
return q, r
return qr_shaped
def pytensor_wrap_svd_with_shapes(fn):
import pytensor.tensor as pt
@functools.wraps(fn)
def svd_shaped(x, full_matrices=False, **kwargs):
*b, m, n = x.type.shape
k = min(m, n)
if full_matrices:
u_shape = (*b, m, m)
vh_shape = (*b, n, n)
else:
u_shape = (*b, m, k)
vh_shape = (*b, k, n)
u, s, vh = fn(x, full_matrices=full_matrices, **kwargs)
u = pt.specify_shape(u, u_shape)
s = pt.specify_shape(s, (*b, k))
vh = pt.specify_shape(vh, vh_shape)
return u, s, vh
return svd_shaped
_MODULE_ALIASES["pytensor"] = "pytensor.tensor"
_CUSTOM_WRAPPERS["pytensor", "linalg.qr"] = pytensor_wrap_qr_with_shapes
_CUSTOM_WRAPPERS["pytensor", "linalg.svd"] = pytensor_wrap_svd_with_shapes
|