1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
import functools
from .autoray import (
do,
infer_backend,
tree_map,
tree_iter,
tree_flatten,
tree_unflatten,
is_array,
)
from . import lazy
class CompilePython:
"""A simple compiler that unravels all autoray calls, optionally sharing
intermediates and folding constants, converts this to a code object using
``compile``, then executes this using ``exec``.
Parameters
----------
fn : callable
Function to compile - should have signature
``fn(*args, **kwargs) -> array``, with ``args`` and ``kwargs`` any
nested combination of ``tuple``, ``list`` and ``dict`` objects
containing arrays (or other constant arguments), and perform array
operations on these using ``autoray.do``.
fold_constants : bool, optional
Whether to fold all constant array operations into the graph, which
might increase memory usage.
share_intermediates : bool, optional
Whether to cache all computational nodes during the trace, so that any
shared intermediate results can be identified.
"""
def __init__(self, fn, fold_constants=True, share_intermediates=True):
self._fn = fn
self._fold_constants = fold_constants
self._share_intermediates = share_intermediates
self._jit_fn = None
def setup(self, args, kwargs):
"""Convert the example arrays to lazy variables and trace them through
the function.
"""
variables = tree_map(lazy.array, (args, kwargs))
if self._share_intermediates:
# with backend_like("autoray.lazy"), lazy.shared_intermediates():
with lazy.shared_intermediates():
outs = self._fn(*variables[0], **variables[1])
else:
# with backend_like("autoray.lazy"):
outs = self._fn(*variables[0], **variables[1])
return lazy.Function(
variables, outs, fold_constants=self._fold_constants
)
def __call__(self, *args, array_backend=None, **kwargs):
"""If necessary, build, then call the compiled function."""
if self._jit_fn is None:
self._jit_fn = self.setup(args, kwargs)
return self._jit_fn(args, kwargs)
class CompileJax:
""" """
def __init__(self, fn, enable_x64=None, platform_name=None, **kwargs):
self._fn = fn
self._enable_x64 = enable_x64
self._platform_name = platform_name
self._jit_fn = None
self._jit_kwargs = kwargs
def setup(self):
import jax
if self._enable_x64 is not None:
import jax
jax.config.update("jax_enable_x64", self._enable_x64)
if self._platform_name is not None:
import jax
jax.config.update("jax_platform_name", self._platform_name)
self._jit_fn = jax.jit(self._fn, **self._jit_kwargs)
self._fn = None
def __call__(self, *args, array_backend=None, **kwargs):
if self._jit_fn is None:
self.setup()
out = self._jit_fn(*args, **kwargs)
if array_backend != "jax":
out = do("asarray", out, like=array_backend)
return out
class CompileTensorFlow:
""" """
def __init__(self, fn, **kwargs):
self._fn = fn
kwargs.setdefault("autograph", False)
self._jit_fn = None
self._jit_kwargs = kwargs
def setup(self):
import tensorflow as tf
self._jit_fn = tf.function(**self._jit_kwargs)(self._fn)
self._fn = None
def __call__(self, *args, array_backend=None, **kwargs):
if self._jit_fn is None:
self.setup()
out = self._jit_fn(*args, **kwargs)
if array_backend != "tensorflow":
out = do("asarray", out, like=array_backend)
return out
class CompileTorch:
""" """
def __init__(self, fn, **kwargs):
import torch
self.torch = torch
if not hasattr(fn, "__name__") and isinstance(fn, functools.partial):
# torch jit.trace requires fn.__name__ and others
functools.update_wrapper(fn, fn.func)
self._fn = fn
self._jit_fn = None
kwargs.setdefault("check_trace", False)
self._jit_kwargs = kwargs
def setup(self, *args, **kwargs):
flat_tensors, ref_tree = tree_flatten((args, kwargs), get_ref=True)
def flat_fn(flat_tensors):
args, kwargs = tree_unflatten(flat_tensors, ref_tree)
return self._fn(*args, **kwargs)
self._jit_fn = self.torch.jit.trace(
flat_fn, [flat_tensors], **self._jit_kwargs
)
def __call__(self, *args, array_backend=None, **kwargs):
if array_backend != "torch":
# torch doesn't handle numpy arrays itself
args = tree_map(self.torch.as_tensor, args, is_array)
if self._jit_fn is None:
self.setup(*args, **kwargs)
out = self._jit_fn(tree_flatten((args, kwargs)))
if array_backend != "torch":
out = do("asarray", out, like=array_backend)
return out
class CompileTorch2:
def __init__(self, fn, **kwargs):
import torch
self.torch = torch
def f(*args, **kwargs):
# for some reason torch compile wants a wrapper around
return fn(*args, **kwargs)
self._jit_fn = torch.compile(f, **kwargs)
def __call__(self, *args, array_backend=None, **kwargs):
if array_backend != "torch":
# torch doesn't handle numpy arrays itself
args = tree_map(self.torch.as_tensor, args, is_array)
out = self._jit_fn(*args, **kwargs)
if array_backend != "torch":
out = do("asarray", out, like=array_backend)
return out
class CompilePytensor:
def __init__(self, fn, **kwargs):
self._fn = fn
self._jit_fn = None
self._jit_kwargs = kwargs
self._output_ref_tree = None
def setup(self, args, kwargs):
import pytensor
import pytensor.tensor as pt
flat_arrays, ref_tree = tree_flatten(
(args, kwargs),
is_leaf=is_array,
get_ref=True,
)
variables = [
pt.tensor(dtype=x.dtype, shape=x.shape) for x in flat_arrays
]
pt_args, pt_kwargs = tree_unflatten(variables, ref_tree)
result = self._fn(*pt_args, **pt_kwargs)
outs, self._output_ref_tree = tree_flatten(
result, is_leaf=is_array, get_ref=True
)
self._jit_fn = pytensor.function(variables, outs, **self._jit_kwargs)
def __call__(self, *args, array_backend=None, **kwargs):
if self._jit_fn is None:
self.setup(args, kwargs)
flat_arrays = tree_flatten((args, kwargs))
flat_outs = self._jit_fn(*flat_arrays)
return tree_unflatten(flat_outs, self._output_ref_tree)
_backend_lookup = {}
_compiler_lookup = {
"jax": CompileJax,
"tensorflow": CompileTensorFlow,
"torch": CompileTorch,
"torch:trace": CompileTorch,
"torch:compile": CompileTorch2,
"pytensor": CompilePytensor,
}
class AutoCompiled:
"""Just in time compile a ``autoray.do`` using function. See the main
wrapper ``autojit``.
"""
def __init__(self, fn, backend=None, compiler_opts=None):
self._fn = fn
self._backend = backend
self._compiled_fns = {}
if compiler_opts is None:
self._compiler_kwargs = {}
else:
self._compiler_kwargs = compiler_opts
def __call__(self, *args, backend=None, **kwargs):
array_backend = infer_backend(
next(tree_iter((args, kwargs), is_array))
)
if backend is None:
if self._backend is None:
# no backend specified anywhere, use the array backend
backend = array_backend
else:
# use the backend specified at init
backend = self._backend
# work out which compiler to use for combo of backend and array backend
try:
key = _backend_lookup[backend, array_backend]
except KeyError:
if backend in _compiler_lookup:
key = backend
else:
key = f"python-{array_backend}"
_backend_lookup[backend, array_backend] = key
try:
fn_compiled = self._compiled_fns[key]
except KeyError:
if "python" in key:
backend = "python"
backend_compiler = _compiler_lookup.get(backend, CompilePython)
compiler_kwargs = self._compiler_kwargs.get(backend, {})
fn_compiled = backend_compiler(self._fn, **compiler_kwargs)
self._compiled_fns[key] = fn_compiled
return fn_compiled(*args, array_backend=array_backend, **kwargs)
def autojit(fn=None, *, backend=None, compiler_opts=None):
"""Just-in-time compile an ``autoray`` function, automatically choosing
the backend based on the input arrays, or via keyword argument.
The backend used to do the compilation can be set in three ways:
1. Automatically based on the arrays the function is called with,
i.e. ``cfn(*torch_arrays)`` will use ``torch.jit.trace``.
2. In this wrapper, ``@autojit(backend='jax')``, to provide a
specific default instead.
3. When you call the function ``cfn(*arrays, backend='torch')`` to
override on a per-call basis.
If the arrays supplied are of a different backend type to the compiler,
then the returned array will also be converted back, i.e.
``cfn(*numpy_arrays, backend='tensorflow')`` will return a ``numpy`` array.
The ``'python'`` backend simply extracts and unravels all the ``do`` calls
into a code object using ``compile`` which is then run with ``exec``.
This makes use of shared intermediates and constant folding, strips
away any python scaffoliding, and is compatible with any library, but the
resulting function is not 'low-level' in the same way as the other
backends.
Parameters
----------
fn : callable
The autoray function to compile.
backend : str, optional
If set, use this as the default backend. The options are:
- ``'python'``: extract and unravel all the ``do`` calls into a
code object using ``compile`` which is then run with ``exec``.
- ``'jax'``: use `jax.jit` to compile the function.
- ``'tensorflow'``: use `tf.function` to compile the function.
- ``'torch'``: use `torch.jit.trace` to compile the function.
- ``'pytensor'``: use `pytensor.function` to compile the function.
If not set, the backend will be inferred from the input arrays, or it
can be set at call time with the ``backend`` keyword argument.
compiler_opts : dict[dict], optional
Dict of dicts when you can supply options for each compiler backend
separately, e.g.:
``@autojit(compiler_opts={'tensorflow': {'jit_compile': True}})``.
Returns
-------
cfn : callable
The function with auto compilation.
"""
kws = dict(backend=backend, compiler_opts=compiler_opts)
if fn is None:
return functools.partial(autojit, **kws)
return functools.wraps(fn)(AutoCompiled(fn, **kws))
|