File: complexity_tracing.py

package info (click to toggle)
python-autoray 0.8.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,744 kB
  • sloc: python: 6,043; makefile: 20
file content (292 lines) | stat: -rw-r--r-- 6,660 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
Functionality for tracing through an autoray.lazy computation and estimating
the cost and scaling.

In the following there are ``cost_*`` functions that estimate the total cost
of a given operation, including sub-leading factors. There are also
`cost_scaling_*` functions that only consider the leading factor of the cost,
so that we can prime number decompose it and extract the scaling.
"""

import math


def cost_tensordot(x):
    x1, x2, axes = x.args
    shape1, shape2 = x1.shape, x2.shape
    cost = math.prod(shape1) * math.prod(shape2)
    for d in axes[0]:
        cost //= shape1[d]
    return cost


cost_scaling_tensordot = cost_tensordot


def cost_qr(x):
    (A,) = x.deps
    shape = A.shape
    m = max(shape)
    n = min(shape)
    return 2 * m * n**2 - (2 / 3) * n**3


def cost_svd(x):
    (A,) = x.deps
    shape = A.shape
    m = max(shape)
    n = min(shape)
    return 4 * m * n**2 - (4 / 3) * n**3


def cost_eigh(x):
    (A,) = x.deps
    m = A.shape[0]
    return 8 / 3 * m**3


def cost_scaling_linalg(x):
    """Here we only care about the leading factor of the cost, which we need to
    preserve so that we can prime number decompose it.
    """
    (A,) = x.deps
    shape = A.shape
    m = max(shape)
    n = min(shape)
    return m * n**2


cost_scaling_qr = cost_scaling_svd = cost_scaling_linalg


def cost_matmul(x):
    A, B = x.deps
    return A.shape[0] * A.shape[1] * B.shape[1]


cost_scaling_matmul = cost_matmul


def cost_einsum(x):
    eq, *operands = x.args
    lhs = eq.split("->")[0]
    terms = lhs.split(",")
    size_dict = {
        ix: d
        for term, x in zip(terms, operands)
        for ix, d in zip(term, x.shape)
    }
    return math.prod(size_dict.values())


cost_scaling_einsum = cost_einsum


def cost_linear(x):
    return math.prod(x.shape)


def cost_nothing(x):
    return 0


COSTS = {
    "qr": cost_qr,
    "qr_stabilized": cost_qr,
    "qr_stabilized_numba": cost_qr,
    "svd": cost_svd,
    "svd_truncated": cost_svd,
    "svd_truncated_numba": cost_svd,
    "svd_truncated_numpy": cost_svd,
    "eigh": cost_eigh,
    "linalg_eigh": cost_eigh,
    "tensordot": cost_tensordot,
    "matmul": cost_matmul,
    "einsum": cost_einsum,
    # other cheap ops
    "mul": cost_linear,
    "sum": cost_linear,
    "add": cost_linear,
    "neg": cost_linear,
    "sqrt": cost_linear,
    "cupy_sqrt": cost_linear,
    "pow": cost_linear,
    "truediv": cost_linear,
    "log10": cost_linear,
    "cupy_log10": cost_linear,
    "norm": cost_linear,
    "linalg_norm": cost_linear,
    "reshape": cost_linear,
    "conj": cost_linear,
    "conjugate": cost_linear,
    "cupy_conjugate": cost_linear,
    "clip": cost_linear,
    "transpose": cost_linear,
    "absolute": cost_linear,
    "trace": cost_linear,
    "torch_transpose": cost_linear,
    "clamp": cost_linear,
    "getitem": cost_nothing,
    "None": cost_nothing,
}


def cost_node(x, allow_missed=True):
    f = x.fn_name
    if f in COSTS:
        return COSTS[f](x)
    elif allow_missed:
        return 0
    else:
        raise ValueError(f"Cost for {f} not implemented.")


def compute_cost(z, print_missed=True):
    C = 0
    missed = {}
    for node in z.descend():
        f = node.fn_name
        if f in COSTS:
            C += COSTS[f](node)
        else:
            missed[f] = missed.get(f, 0) + 1

    if missed and print_missed:
        import warnings

        warnings.warn(f"Missed {missed} in cost computation.")

    return C


COST_SCALINGS = {
    "qr": cost_scaling_qr,
    "qr_stabilized": cost_scaling_qr,
    "qr_stabilized_numba": cost_scaling_qr,
    "svd": cost_scaling_svd,
    "svd_truncated": cost_scaling_svd,
    "svd_truncated_numba": cost_scaling_svd,
    "svd_truncated_numpy": cost_scaling_svd,
    "eigh": cost_scaling_linalg,
    "tensordot": cost_scaling_tensordot,
    "matmul": cost_scaling_matmul,
    "einsum": cost_scaling_einsum,
    # other cheap ops
    "mul": cost_linear,
    "sum": cost_linear,
    "add": cost_linear,
    "neg": cost_linear,
    "sqrt": cost_linear,
    "pow": cost_linear,
    "truediv": cost_linear,
    "log10": cost_linear,
    "norm": cost_linear,
    "reshape": cost_linear,
    "conj": cost_linear,
    "conjugate": cost_linear,
    "clip": cost_linear,
    "transpose": cost_linear,
    "absolute": cost_linear,
    "trace": cost_linear,
    "getitem": cost_nothing,
    "None": cost_nothing,
}


def prime_factors(n) -> list[int]:
    fs = []
    if n <= 1:
        return fs

    while n % 2 == 0:
        fs.append(2)
        n = n // 2
    for i in range(3, int(math.sqrt(n)) + 1, 2):
        while n % i == 0:
            fs.append(i)
            n = n / i
    if n > 2:
        fs.append(n)
    return fs


def is_prime(n: int) -> bool:
    for i in range(int(n**0.5), 1, -2 if int(n**0.5) % 2 == 0 else -1):
        if n % i == 0:
            return False
    return False if n in (0, 1) else True


def closest_prime(nt: int) -> int:
    if is_prime(nt):
        return nt
    lower = None
    higher = None
    for i in range(nt if nt % 2 != 0 else nt - 1, 1, -2):
        if is_prime(i):
            lower = i
            break
    c = nt + 1
    while higher is None:
        if is_prime(c):
            higher = c
        else:
            c += 2 if c % 2 != 0 else 1
    return higher if lower is None or higher - nt < nt - lower else lower


def frequencies(it):
    c = {}
    for i in it:
        c[i] = c.get(i, 0) + 1
    return c


def compute_cost_scalings(z, factor_map, print_missed=True):
    from autoray.lazy import descend

    counts = {}
    missed = {}

    for node in descend(z):
        f = node.fn_name

        if f in COST_SCALINGS:
            CS = COST_SCALINGS[f](node)
        else:
            missed[f] = missed.get(f, 0) + 1
            continue

        # group operations
        key = (CS, f)
        counts[key] = counts.get(key, 0) + 1

    if missed and print_missed:
        import warnings

        warnings.warn(f"Missed {missed} in cost scaling computation.")

    scalings = []

    for key, freq in counts.items():
        op = {
            "cost": key[0],
            "name": key[1],
            "freq": freq,
        }
        pf = frequencies(prime_factors(op["cost"]))
        for name, factor in factor_map.items():
            op[name] = pf.pop(factor, 0)

        if pf and print_missed:
            import warnings

            warnings.warn(
                f"Missed prime factor(s) {pf} in cost scaling computation, "
                f" for operation {op}."
            )

        scalings.append(op)

    scalings.sort(key=lambda x: x["cost"], reverse=True)
    return scalings