
AVC, Application View Controller

User Manual
version 0.6.0

Fabrizio Pollastri <f.pollastri@inrim.it>

mailto:pollastri@inrim.it

AVC, Application View Controller User Manual

Copyright © 2007-2008 Fabrizio Pollastri

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is at the end of this document.

AVC outline
Current version is AVC 0.6.0, beta status, released 10-Jun-2008.

Tested on:

Debian GNU/Linux Lenny, FP 10-Jun-2008.

author:

Fabrizio Pollastri, e-mail: f.pollastri (at) inrim.it.

The AVC web site is hosted at http://avc.inrim.it

Logo:

Author note

The author will be happy to ear about any usage of AVC. Please, feel free to send questions,
corrections and suggestions to the author. The poor English of this manual requires special
indulgence.

Document info

author: Fabrizio Pollastri
created: 2007-07-10-11:25:23 PM
modified: 2008-06-10-15:20:31
version: 93

Fabrizio Pollastri 2/80

http://avc.iriti.cnr.it/

AVC, Application View Controller User Manual

Table of Contents

 1 Introduction...6
 1.1 What is...6
 1.2 Features...6
 1.3 Quick start..6
 1.4 Installation...7

 2 Common reference..8
 2.1 Supported widgets...8
 2.2 Widgets-variables names matching...8
 2.3 Matching namespaces..9
 2.4 Connected objects..9
 2.5 Static and dynamic connections...9
 2.6 Uniform separation between application logic and GUI..9
 2.7 AVC initialization..10
 2.8 Connecting widgets with variables...10
 2.9 Abstract widget collection..10

Button..10
Check button..10
Combo box...11
Entry...11
Label..11
Radio button...11
Slider..11
Spin button...11
Status bar...11
Text view/edit...11
Toggle button...11

 2.10 Testing and debugging...12
 2.10.1 Testing printout for example gtk_counter.py..12

 3 GTK+ Reference..14
 3.1 Module dependencies...14
 3.2 Widget naming...14
 3.3 Status bar widget...14
 3.4 Interface designer..14

 4 Qt3 Reference...15
 4.1 Module dependencies...15
 4.2 Widget naming...15
 4.3 Application GUI class..15
 4.4 Interface designer..15

 5 Qt4 reference..16
 5.1 Module dependencies...16
 5.2 Widget naming...16
 5.3 Application GUI class..16
 5.4 Interface designer..16

 6 Tk reference..17
 6.1 Module dependencies...17
 6.2 Widget naming...17
 6.3 Interface designer..17

Fabrizio Pollastri 3/80

AVC, Application View Controller User Manual

 7 wxWidgets reference...18
 7.1 Module dependencies...18
 7.2 Widget naming...18
 7.3 Application GUI class..18
 7.4 Interface designer..18

 8 GTK+ examples...19
 8.1 Spin button example..19

 8.1.1 Python source ..19
 8.2 Counter example..20

 8.2.1 Python source...20
 8.3 Label example..22

 8.3.1 Python source...22
 8.4 Showcase example...24

 8.4.1 Python source...25
 8.5 Countdown example...27

 8.5.1 Python source...28

 9 Qt3 examples..31
 9.1 Spin box example...31

 9.1.1 Python source...31
 9.2 Counter example..32

 9.2.1 Python source...32
 9.3 Label example..34

 9.3.1 Python source...34
 9.4 Showcase example...36

 9.4.1 Python source...37
 9.5 Countdown example...40

 9.5.1 Python source...40

 10 Qt4 examples..43
 10.1 Spin box example...43

 10.1.1 Python source...43
 10.2 Counter example..44

 10.2.1 Python source...44
 10.3 Label example..46

 10.3.1 Python source...46
 10.4 Showcase example...48

 10.4.1 Python source...49
 10.5 Countdown example...52

 10.5.1 Python source...52

 11 Tk examples..55
 11.1 Spin box example...55

 11.1.1 Python source...55
 11.2 Counter example..56

 11.2.1 Python source...56
 11.3 Label example..58

 11.3.1 Python source...58
 11.4 Showcase example...60

 11.4.1 Python source...60
 11.5 Countdown example...63

 11.5.1 Python source...63

 12 wxWidgets examples...66
 12.1 Spin control example..66

 12.1.1 Python source ..66
 12.2 Counter example..67

Fabrizio Pollastri 4/80

AVC, Application View Controller User Manual

 12.2.1 Python source...67
 12.3 Label example..69

 12.3.1 Python source...69
 12.4 Showcase example...71

 12.4.1 Python source...72
 12.5 Countdown example...74

 12.5.1 Python source...75

 13 References...78

Fabrizio Pollastri 5/80

AVC, Application View Controller User Manual

 1 Introduction

 1.1 What is
AVC, the Application View Controller is a multiplatform, fully automatic, live connection among
graphical interface widgets and application variables for the python [1] language.

AVC supports in a uniform way the most popular widget toolkits: GTK+ [2], Qt3 [3], Qt4 [4], Tk
[5], wxWidgets [6].

AVC is a normal python package that can be imported by any python application.

Graphical User Interfaces (GUIs) are the easy way to input data to an application software and
to view the data produced by the application. The management of data exchanges between
the GUI and the application is a central problem in GUI programming, it absorbs a relevant part
of the programming effort. AVC makes the programming of this data exchanges very easy.

AVC is a fully transparent and automatic connection between the values displayed and entered
by GUI widgets and the variables of an application using the GUI. The connection is
bidirectional. If the application sets a new value into a connected variable, AVC copies the new
value into all the widgets connected to the variable. If a new value is entered by a widget, AVC
copies the new value into all other widgets connected the variable, into the variable and
optionally notifies the change to the application. The connections are autogenerated by looking
for matching names between widget names and variable names.

The application is completely unaware of the presence of the connected variables, it reads and
writes them as normal variables. Only if the application requires to be immediately notified
when a connected variable changes value, a notify handler must be added to the application.

 1.2 Features
● Fully transparent widget-variable connections
● Automatic connection by matching widgets and variables names
● Multiple matching namespaces
● Dynamic connections
● No design pattern, no application redesign, no widget toolkit dependent code,

separation between application logic and GUI.
● Multiple widget toolkits support: GTK+, Qt3, Qt4, Tk, wxWidgets.
● Full compatibility and support for Glade, Qt Designer, Visual Tcl and wxGlade interface

design tools.
● Widgets support: button, check button, combo box, entry, label, radio button, slider,

spin button, status bar, text view/edit, toggle button.
● Variable types support: boolean, integer, float, string, list, tuple.
● Multiple widgets to one variable connection
● Dual update timing of variable value views: immediate or periodic.
● Testing printout logging activity with selectable verbosity
● Python package written in pure python
● Free software (GNU GPL license version 3 [15])

 1.3 Quick start
Essential instructions to get started with AVC. This instructions are valid for all supported
toolkits. The AVC package is supposed already installed. For a simple example, see further

Fabrizio Pollastri 6/80

AVC, Application View Controller User Manual

along the section “Spinbutton/Spinbox/SpinCtrl Example” of the widget toolkit of interest.

Import the python binding of the widget toolkit of choice, then Import the AVC package.

from avc import *

Derive the application class from the AVC class. Let suppose that the application class name is
"theApp".

class theApp(AVC):

In the class __init__ method create the GUI previously designed with your preferred interface
designer or create it statement by statement, naming the widgets with the rule described
below.

Define all variables to be connected in the application. Each variable must have a name equal
to the matching name of the widgets that are to be connected to the variable. A widget
matching name is the widget name itself, if it does not contain a double underscore '__',
otherwise is the name part before the double underscore.

In the application, after the creation of the GUI and after the instantiation of all the variables to
be connected, call the instance method 'avc_init'. Let suppose that the application instance
name is "the_app".

the_app.avc_init()

All is done for AVC. When the application enters the toolkit event loop, AVC takes full control
over data exchange between the connected variables and widgets.

 1.4 Installation
To run AVC, Python 2.2 or later must already be installed. The latest release is
recommended. Python is available from http://www.python.org/.

The first step is to download the AVC tarball from http://avc.inrim.it/dist/.

Expand the tar archive in a temporary directory (not directly in Python's site-packages). It
contains a distutils setup file "setup.py".

Open a shell. Unpack the tarball in a temporary directory (not directly in Python's site-
packages). Commands:

tar zxf avc-X.Y.Z.tar.gz

X, Y and Z are the major and minor version numbers of the tarball.

Go to the directory created by expanding the tarball:

cd avc-X.Y.Z

Get root privileges and install the package:

su
(enter root password)
python setup.py install

If the python executable isn't on your path, you'll have to specify the complete path, such as
/usr/local/bin/python.

Fabrizio Pollastri 7/80

http://avc.iriti.cnr.it/dist/
http://www.python.org/

AVC, Application View Controller User Manual

 2 Common reference
This is the part of the user manual common to all supported widget toolkits: GTK+, Qt3, Qt4, Tk
and wxWidgets.

 2.1 Supported widgets
The following table shows the correspondences between the AVC abstract widget types and the
names of the real widgets in the supported toolkits.

Table 1: Map of supported widget

AVC
abstract

widget type

real widgets by supported toolkits

GTK+ Qt3 Qt4 Tk wxWidgets

Button Button QPushButton(1) QPushButton(1) Button Button
BitmapButton

Check Button CheckButton QCheckBox QCheckBox Checkbutton CheckBox

Combo Box Combo Box QComboBox(2) QComboBox(2) - Choice
ComboBox

Entry Entry QLineEdit QLineEdit Entry TextCtrl

Label Label QLabel QLabel Label StaticText

Radio Button RadioButton QRadioButton QRadioButton Radiobutton RadioBox

Slider Hscale
VScale QSlider(3) QSlider(3) Scale Slider

Spin Button SpinButton QSpinBox(4) QSpinBox(4)
QdoubleSpinbox

Spinbox SpinCtrl

Status Bar StatusBar(5) - - - StatusBar(5)

Text View TextView QTextEdit QTextEdit Text TextCtrl

Toggle Button ToggleButton QPushButton(6) QPushButton(6) Togglebutton ToggleButton

Notes
(1) QPushButton with "toggleButton" property set to "False" (the default).
(2) QComboBox with "editable" property set to "False" (the default).
(3) QSlider manages interger values only.
(4) QSpinBox manages interger values only.
(5) StatusBar is used as a simple output label.
(6) QPushButton with "toggleButton" property set to "True". Set it with QPushButton method

setToggleButton(True) .

 2.2 Widgets-variables names matching
AVC connects widgets and variables using a names matching procedure with the following
rules.

The matching name for a variable is the variable name itself.

The matching name for a widget is the widget name itself, if the name does not contain a
double underscore ('__'), otherwise the matching name is the part of the widget name before

Fabrizio Pollastri 8/80

AVC, Application View Controller User Manual

the double underscore. This allow to
differentiate widget names for widgets that are
to be connected to the same variable.
Each widget having a matching name equal to a
variable matching name is connected to that
variable.

A widget can be connected to one variable. A
variable can be connected to one or more
widgets.

 2.3 Matching namespaces
The name matching process of AVC works on two sides. One is the application program where
AVC search for matching names of variables. The other is the GUI where AVC search for
matching names of widgets. The matching process can be performed any number of times and
at any moment during application run time by a simple call to the proper AVC method
(“avc_init” or “avc_connect”). For each call, the name search in the application is bounded to
the attributes of the python object calling the AVC method. While the name search in the
widgets is bounded to a widgets subtree, if the subtree root widget is specified in the call. If no
root widget is specified, the whole GUI widget tree is searched. In other words, the search
namespace of the application variables is the scope (the directly accessible namespace or the
set of local symbols) of the object calling the AVC method. See the “countdown” example.

 2.4 Connected objects
Each python object calling one of the connecting methods of AVC (“avc_init” or “avc_connect”)
is a “connected” object. All connected objects must be instances of classes derived from the
AVC class. Let suppose that the class name is "myConnectedClass", the class definition
statement will be

 class myConnectedClass(AVC):

The AVC class is derived from the builtin object class that is the base of all new style classes
introduced with python 2.2. So, also the derived class becomes a new style class.

 2.5 Static and dynamic connections
Any widget-variable connection created by AVC is dynamic, in the sense that it can be created
or deleted at any moment during the application run time. The simplest usage of AVC as
outlined in 1.3 uses the connections in a “static” mode: the connections are setup only one
time at the application init (call to avc_init) and they stay alive and unchanged until application
termination. In a more flexible usage, AVC creates some connections at application init time,
then during run time new GUIs or parts of GUI come up as connected objects and when the
application destroy some part of this GUIs, the corresponding connections are automatically
deleted. When the application deletes a widget that belongs to a connection, AVC
automatically removes it from the connection and if the connection has no more widgets, the
connection is also removed (see "countdown" example).

 2.6 Uniform separation between application logic and GUI
AVC allows to structure the application with program logic separated from GUI statements for

Fabrizio Pollastri 9/80

widget name matching name

button_ok button_ok

toggle__button toggle

check_button_1 check_button_1

radio_button__2 radio_button

Table 2: Examples of matching names

AVC, Application View Controller User Manual

all supported toolkits. For example, program logic can be put in one class and GUI
management in another class (see "counter" example).

 2.7 AVC initialization
AVC start its job just after it is initialized. AVC initialization can take place in the application
after the creation of the GUI and after the instantiation of all variables to be connected. AVC
initialization is done by calling the instance method avc_init. Let suppose that the application
instance name is "the_app", the AVC init statement will be

 the_app.avc_init()

When the value of a connected variable is changed, the values displayed by the widgets
connected to it are updated by AVC in one of two allowed modes: immediate or periodic. Mode
selection is done at AVC initialization specifying the "view_period" argument. If the argument is
omitted, like in the_app.avc_init(), it is assigned a default value of 0.1 seconds, selecting a
periodic views update with that period. If the argument is assigned a value, like in
the_app.avc_init(view_period=0.2), views will be updated every "view_period" seconds. If the
argument is assigned to zero or to "None" value, like in the_app.avc_init(view_period=0),
views will be updated immediately after each change of the variable value.

 2.8 Connecting widgets with variables
Two AVC methods can be called to perfom widgets-variables connections: “avc_init” and
“avc_connect”. As detailed in 2.7, any application using AVC must call the “avc_init” method at
init time. This call is normally performed by the application object that implements the “main”
function of the application. avc_init initializes all the internal logic of AVC and makes any
required connection of the “main” object between its attributes and the whole widget tree of
the GUI. In many cases this is enough, so no more AVC calls are required. If other application
objects needs to perform connections, they must call the “avc_connect” method. This method
makes any required connection of the calling object between its attributes and the widget tree
whose root widget is given as argument. Let suppose that the object name is “object1”, the call
statement will be

 object1.avc_connect(tree_root_widget)

If the argument is omitted, the widget tree defaults to the whole GUI widget tree. The following
rules apply to avc_connect operations: widget trees can overlap, a connected widget can not
be reconnected in another way. See "countdown" example.

 2.9 Abstract widget collection

Button
The memoryless press button, its connected variable must be a boolean. In normal state
(button not pressed) the variable is "False", in pressed state (mouse pointer over button and
mouse button 1 pressed) the variable is "True". Names for button widget in supported toolkits:
GTK+ "Button", Qt3 and Qt4 "QPushButton" with toggle attribute off, Tk “Button”, wxWidgets
“Button”.

Check button
The behavior of the check button widget is the same of the toggle button widget. See toggle
button. Names for check button widget in supported toolkits: GTK + "CheckButton", Qt3 and
Qt4 "QCheckBox", Tk “Checkbutton”, wxWidgets “CheckBox”.

Fabrizio Pollastri 10/80

AVC, Application View Controller User Manual

Combo box
The combo box, an item selector. The connected variable must be of type integer, its value is
the index of the selected item. When no item is selected index is -1. Names for combo box
widget in supported toolkits: GTK+ “ComboBox”, Qt3 and Qt4 "QComboBox", not available in
Tk, wxWidgets “Choice” “ComboBox”.

Entry
The text entry, its connected variable can be integer, float or string. Text input must conform
to the type of the connected variable. If the connected variable is of type string, its value is
copied to the entry widget "as is", if type is integer or float, the value is converted to string
before copy. Names for text entry widget in supported toolkits: GTK+ "Entry", Qt3 and Qt4
"QLineEdit", Tk “Entry”, wxWidgets “TextCtrl”.

Label
The text label, its connected variable can be boolean, integer, float, string, list, tuple or object.
If the label is created with a default text, AVC tests it against the connected variable to be a
valid python formatting string. If the test is successful, the default text is saved by AVC and
used to format the label text updates when the connected variable value changes. If the
connected variable is a generic python object, the formatting string is applied to the dictionary
of the object. If the test is not successful, the label text updates are rendered by the standard
python string representation applying the str function to the connected variable. For further
details, see the “label example”. Names for text entry widget in supported toolkits: GTK+
“Label”, Qt3 and Qt4 “QLabel”, Tk “Label”, wxWidgets “StaticText”.

Radio button
The radio buttons come always in groups of two or more radio buttons. Each radio button
behaves like a check button, but only one radio button at a time can be checked in each group.
A variable of type integer can be connected to each group of radio buttons, its value is the
index of the checked radio button in the group. Names for text entry widget in supported
toolkits: GTK+ “RadioButton”, Qt3 and Qt4 “QRadioButton”, Tk “Radiobutton”, wxWidgets
“RadioBox”.

Slider
The slider, its connected variable can be integer or float. The GTK+ "HScale" and "VScale"
support both types. On the contrary, Qt3 and Qt4 support only integer with "QSlider" widget.
Remember that in python floats are always doubles. Names for text entry widget in supported
toolkits: GTK+ “Hscale” and “Vscale”, Qt3 and Qt4 “QSlider”, Tk “Slider”, wxWidgets “Slider”.

Spin button
The spin button, its connected variable can be integer or float. The GTK+ "SpinButton" support
both types. On the contrary, Qt3 and Qt4 differentiate integer or float support with two
widgets: "SpinBox" and "DoubleSpinBox". Remember that in python floats are always doubles.
Names for spin button widget in supported toolkits: GTK+ "SpinButton", Qt3 and Qt4
"QSpinBox" for integer and "QDoubleSpinBox" for float, Tk “Spinbox”, wxWidgets “SpinCtrl”.

Status bar
The status bar, its connected variable is a string. Names for text view/edit widget in supported
toolkits: GTK+ "StatusBar", Qt3, Qt4 and Tk not supported, wxWidgets “StatusBar”.

Text view/edit
The text view/edit, its connected variable is a string. Names for text view/edit widget in
supported toolkits: GTK+ "TextView", Qt3 and Qt4 "QtextEdit", Tk “Text”, wxWidgets
“TextCtrl”.

Toggle button
The toggle button, a button with memory, its connected variable must be a boolean. Each time

Fabrizio Pollastri 11/80

AVC, Application View Controller User Manual

the button is pressed, it changes its state: from on to off or viceversa. In off state the variable
is "False", in on state the variable is "True". Names for toggle button widget in supported
toolkits: GTK+ "ToggleButton", Qt3 and Qt4 "PushButton" with toggle attribute on, Tk
“Togglebutton”, wxWidgets “ToggleButton”.

 2.10 Testing and debugging
AVC can produce a printout of its activity that can be useful for testing and debug purposes.
The verbosity level of the printout can be selected from 0 (minimum) to 4 (maximum). Let
suppose that the program to test is “myprogram.py”, then to produce the printout with the
maximum verbosity the following command is required.

 myprogram.py --avc-verbosity 4

The content of the each verbosity level is the following.

● level 0: nothing printed, the default.

● level 1: header with AVC version, widget toolkit type, program name, verbosity level,
connection update mode; connection list with name, variable type, initial value,
removed connections.

● level 2: as level 1 plus the widgets and the change handlers list of each connection, the
removed widgets.

● level 3: as level 2 plus the details of widgets in connections lists.

● level 4: as level 3 plus full widget tree for each scansion.

 2.10.1 Testing printout for example gtk_counter.py

The following example shows the output produced by running the example “gtk_counter.py”
(see “GTK+ examples”) with maximum verbosity.

./gtk_counter.py --avc-verbosity 4

AVC 0.6.0 - Activity Report
widget toolkit binding: GTK+
program: ./gtk_counter.py
verbosity: 4
connection update mode: periodic, period=0.1 sec
widget tree scansion from top level [<gtk.Window object at 0x832b4dc (GtkWindow at
0x839b048)>, <gtk.Window object at 0x832b504 (GtkWindow at 0x839b0f8)>]
 skip unsupported widget Window,"GtkWindow"
 skip unsupported widget Window,"counter"
 skip unmatched widget Label,"GtkLabel"
 skip unsupported widget HBox,"hbox1"
 creating connection "counter" in <__main__.ExampleMain object at 0x83205ec>
 type: <type 'int'>
 initial value: 0
 add widget Label,"counter" to connection "counter"
 valid format string: "%d"
 creating connection "high_speed" in <__main__.ExampleMain object at 0x83205ec>
 type: <type 'bool'>
 initial value: False
 connected handler "high_speed_changed"

Fabrizio Pollastri 12/80

AVC, Application View Controller User Manual

 add widget CheckButton,"high_speed" to connection "high_speed"
 skip unmatched widget Label,"GtkLabel"
removing widget Label from connection "counter" of <__main__.ExampleMain object at
0x83205ec>
removing connection "counter" from <__main__.ExampleMain object at 0x83205ec>
removing widget CheckButton from connection "high_speed" of <__main__.ExampleMain
object at 0x83205ec>
removing connection "high_speed" from <__main__.ExampleMain object at 0x83205ec>

In the “widget tree scansion” all the widgets of the GUI are analyzed. In fact, the root widgets
of the searched tree are the top level windows. Each widget can be skipped (ignored) or added
to a connection. A widget is skipped because it is of type not supported AVC or it has a name
not matching any variable of the application or it is already connected. When a name match is
found and the related connection do not exists, the message “ creating connection ...” appears
with the name of the connection and the object in which resides the connected variable. The
type and the initial value of the variable is also displayed. A widget is added to a connection
because it name matches some application variable. For each added widget, its class type and
its name are printed.

Things to be noticed. The connection “counter” has a label widget that was preloaded with a
valid formatting string ("%d"). The connection “high_speed” has a check button
widget and it has the change handler “high_speed_changed”.

When the main window is closed, all the contained widgets are deleted, so for each deleted
widget that is also connected a remove message appears. When a connection has no more
widgets, it is also removed and a remove message appears.

Fabrizio Pollastri 13/80

AVC, Application View Controller User Manual

 3 GTK+ Reference
This is the part of the user manual specific to the GTK+ widgets toolkit.

 3.1 Module dependencies
AVC GTK+ depends on PyGTK [7] the python wrapper for GTK+ libraries. AVC GTK+ imports
the following modules from PyGTK.

import gtk
import gobject

 3.2 Widget naming
Both Glade, the interface designer, and GTK+ allow duplicated naming of widgets.

 3.3 Status bar widget
AVC uses the GTK+ status bar widget as a simple output label. Only context #1 with one or
none message on status bar stack is used.

 3.4 Interface designer
AVC is fully compatible with Glade, the design tool for GTK+. Glade produces an interface
description that is saved as a specific xml format (.glade).

Fabrizio Pollastri 14/80

AVC, Application View Controller User Manual

 4 Qt3 Reference
This is the part of the user manual specific to Qt3 [3] widgets toolkit.

 4.1 Module dependencies
AVC Qt3 depends on PyQt v3 [8] the python bindings for Qt v3 application framework. AVC Qt3
imports the following modules from PyQt.

import qt

 4.2 Widget naming
Qt3 Designer and Qt3 do not allow duplicated naming of widgets. So use the 'double
underscore' mechanism to differentiate widgets names.

 4.3 Application GUI class
The application objects that need to interact with Qt3 GUI, must be instantiated from an
application class that is derived from the QApplication class. Let suppose that the application
GUI class name is "theAppGUI", the application class statement will be

class theAppGUI(QApplication):

 4.4 Interface designer
AVC is fully compatible with Qt3 Designer, the design tool for Qt3. Qt3 Designer produces an
interface description that is saved as a specific xml format (.ui).

Fabrizio Pollastri 15/80

AVC, Application View Controller User Manual

 5 Qt4 reference
This is the part of the user manual specific to Qt4 [4] widgets toolkit.

 5.1 Module dependencies
AVC Qt4 depends on PyQt v4 [8] the python bindings for Qt v4 application framework. AVC Qt4
imports the following modules from PyQt.

import PyQt4.Qt as qt

 5.2 Widget naming
Qt4 Designer and Qt4 do not allow duplicated naming of widgets. So use the 'double
underscore' mechanism to differentiate widgets names.

 5.3 Application GUI class
The application objects that need to interact with Qt4 GUI, must be instantiated from an
application class that is derived from the QApplication class. Let suppose that the application
GUI class name is "theAppGUI", the application class statement will be

class theAppGUI(QApplication):

 5.4 Interface designer
AVC is fully compatible with Qt4 Designer, the design tool for Qt4. Qt4 Designer produces an
interface description that is saved as a specific xml format (.ui).

Fabrizio Pollastri 16/80

AVC, Application View Controller User Manual

 6 Tk reference
This is the part of the user manual specific to Tk [5] widgets toolkit.

 6.1 Module dependencies
AVC Tk depends on Tkinter [9] the python bindings for Tk application framework. Tkinter is part
of the standard python library. AVC Tk imports the following module from python standard
library.

import Tkinter

 6.2 Widget naming
The Tk toolkit has a specific naming scheme for its widgets. Widget name is generally the
concatenation of its parent's name followed by a period (unless the parent is the root window .
) and a string containing no periods, e. g. “.baseframe.button1”. For this reason, the complete
name of each widget is unique. AVC takes as widget name not the complete Tk name but only
the part after the rightmost dot. For example a widget with the complete Tk name
“.baseframe.button1” has the AVC name “button1”.

 6.3 Interface designer
AVC supports the 'Visual Tcl' interface design tool for Tk. Visual Tcl produces an interface
description that is saved as tcl script.

Fabrizio Pollastri 17/80

AVC, Application View Controller User Manual

 7 wxWidgets reference
This is the part of the user manual specific to wxWidgets [6] widgets toolkit.

 7.1 Module dependencies
AVC wxWidgets depends on wxPython [10] the python bindings for wxWidgets application
framework. AVC wxWidgets imports the following module from python standard library.

import wx

 7.2 Widget naming
Both wxGlade, the interface designer, and wxWidgets allow duplicated naming of widgets.

 7.3 Application GUI class
The application objects that need to interact with wxWidgets GUI, must be instantiated (in the
simplest form) from an application class that is derived from the PySimpleApp class. Let suppose
that the application GUI class name is "theAppGUI", the application class statement will be

class theAppGUI(PySimpleApp):

 7.4 Interface designer
AVC supports the 'wxGlade' interface design tool for wxWidgets and all other design tools
producing an interface description that is saved in the native xml format ('xrc') of wxWidgets.

Fabrizio Pollastri 18/80

AVC, Application View Controller User Manual

 8 GTK+ examples

 8.1 Spin button example
This simple example shows how AVC can manage data
exchange from widget to widget without any specific code
in the application. The program creates a window with two
widgets: a spin button and a label. When the value in the
spin button is changed by clicking on up or down arrows or
by entering it with the keyboard, the new value is displayed into the label.

 8.1.1 Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri
.license : GNU General Public License v3

import gtk # gimp tool kit bindings
import gtk.glade # glade bindings

from avc import * # AVC

GLADE_XML = 'gtk_spinbutton.glade' # GUI glade descriptor

class Example(AVC):
 """
 A spin button whose value is replicated into a label
 """

 def __init__(self):

 # create GUI
 self.glade = gtk.glade.XML(GLADE_XML)

 # autoconnect GUI signal handlers
 self.glade.signal_autoconnect(self)

 # the variable holding the spin button value
 self.spin_value = 0

 def on_destroy(self,window):
 "Terminate program at window destroy"
 gtk.main_quit()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit

Fabrizio Pollastri 19/80

AVC, Application View Controller User Manual

END

The GUI layout was previously edited with Glade and saved to the file ‘gtk_spinbutton.glade’.

The key points of the example regarding AVC are the following.

● During Glade editing, the same name 'spin_value' was given to the spin button and to
the label.

● The AVC package is imported at program begin (from avc import *).
● The application class is derived from the AVC class (class Example(AVC):).

● A integer variable with an initial value of 0 and name 'spin_value' is declared in the
application (self.spin_value = 0).

● The avc_init method is called after the instantation of the application class, to realize
the connections of the two widgets through the 'spin_value' variable and to initialize
the widgets values with the initial value of the variable (example.avc_init()).

Example files in directory 'examples' of distribution: program 'gtk_spinbutton.py' , Glade
descriptor 'gtk_spinbutton.glade'.

 8.2 Counter example
This example shows how AVC can manage data input from
a check button widget to the application and from the
application to a label widget without any specific code in the
application. The program creates a window with two
widgets: a check button and a label. The label displays the
value of an integer counter. The check button controls the increment speed of the counter.
Initially, it is unchecked meaning that the increment speed of the counter is 2 units per second.
When the user checks the check button the increment speed grows to 10 units per seconds
and returns to the initial value (2) when the check button is unchecked again.

 8.2.1 Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri
.license : GNU General Public License v3

import gobject #--
import gtk #- gimp tool kit bindings
import gtk.glade # glade bindings

from avc import * # AVC

GLADE_XML = 'gtk_counter.glade' # GUI glade descriptor
LOW_SPEED = 500 #--
HIGH_SPEED = 100 #- low and high speed period (ms)

class ExampleGUI:
 "Counter GUI creation"

 def __init__(self):

Fabrizio Pollastri 20/80

AVC, Application View Controller User Manual

 # create GUI
 glade = gtk.glade.XML(GLADE_XML)

 # autoconnect GUI signal handlers
 glade.signal_autoconnect(self)

 def timer(self,period,function):
 "Start a GTK timer calling back 'function' every 'period' seconds."
 self.timer1 = gobject.timeout_add(period,function)

 def on_destroy(iself,window):
 "Terminate program at window destroy"
 gtk.main_quit()

class ExampleMain(AVC):
 """
 A counter displayed in a Label widget whose count speed can be
 accelerated by checking a check box.
 """

 def __init__(self,gui):

 # save GUI
 self.gui = gui

 # the counter variable and its speed status
 self.counter = 0
 self.high_speed = False

 # start incrementer timer
 self.gui.timer(LOW_SPEED,self.incrementer)

 def incrementer(self):
 """
 Counter incrementer: increment period = LOW_SPEED, if high speed is False,
 increment period = HIGH_SPEED otherwise. Return False to destroy previous
 timer.
 """
 self.counter += 1
 if self.high_speed:
 period = HIGH_SPEED
 else:
 period = LOW_SPEED
 self.gui.timer(period,self.incrementer)
 return False

 def high_speed_changed(self,value):
 "Notify change of counting speed to terminal"
 if value:
 print 'counting speed changed to high'
 else:
 print 'counting speed changed to low'

MAIN

example_gui = ExampleGUI() # create the application GUI
example = ExampleMain(example_gui) # instantiate the application
example.avc_init() # connect widgets with variables

Fabrizio Pollastri 21/80

AVC, Application View Controller User Manual

gtk.main() # run GTK event loop until quit

END

The GUI layout was previously edited with Glade and saved to the file ‘gtk_counter.glade’.

The key points of the example regarding AVC are the following.

● During Glade editing, the name 'counter' was given to the label and the name
'high_speed' was given to the check button.

● The AVC package is imported at program begin (from avc import *).
● The application class is derived from the AVC class (class Example(AVC):).
● A integer variable with an initial value of 0 and name 'counter' is declared in the

application to hold the counter value (self.counter = 0).
● A boolean variable with an initial value of False and name 'high_speed' is declared in

the application to hold the speed status of the counter increment speed
(self.high_speed = False).

● The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections between the 'counter' variable and the
label widget and between the the 'high_speed' variable and the check button, the label
widget is initialized with the initial value of the 'counter' variable.

Example files in directory 'examples' of distribution: program 'gtk_counter.py' , Glade
descriptor 'gtk_counter.glade'.

 8.3 Label example
This example shows the formatting capabilities of the label widget. For each supported type of
the connected variable, a formatting string is defined and a sample value of the connected
variable is displayed into two label widgets: one with formatting and the other with the
standard python string representation.

 8.3.1 Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

Fabrizio Pollastri 22/80

AVC, Application View Controller User Manual

import gtk # gimp tool kit bindings
import gtk.glade # glade bindings

from avc import * # AVC

GLADE_XML = 'gtk_label.glade' # GUI glade descriptor

class Example(AVC):
 """
 Showcase of formatting capabilities for the label widget
 """

 def __init__(self):

 # create GUI
 self.glade = gtk.glade.XML(GLADE_XML)

 # autoconnect GUI signal handlers
 self.glade.signal_autoconnect(self)

 # all types of connected variables
 self.bool_value = True
 self.float_value = 1.0
 self.int_value = 1
 self.list_value = [1,2,3]
 self.str_value = 'abc'
 self.tuple_value = (1,2,3)
 class Obj:
 "A generic object with 2 attributes x,y"
 def __init__(self):
 self.x = 1
 self.y = 2
 self.obj_value = Obj()

 def on_destroy(self,window):
 "Terminate program at window destroy"
 gtk.main_quit()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit

END

The GUI layout was previously edited with Glade and saved to the file ‘gtk_label.glade’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

● For each control type (for each row) the two label widgets, one in the
column “Label with format” and one in the column “Label without
format”, are connected to the variable of the corresponding type. For
example, in row “boolean”, both label widgets are called “bool_value”, so
they connect to the variable self.bool_value .

● When the GTK event loop is entered both columns are set to display the

Fabrizio Pollastri 23/80

AVC, Application View Controller User Manual

initial values of the connected variables. For example, in row “integer”,
both labels are set to display the integer value 1.

● The differences of representation between the column “Label with
format” and the column “Label without format” reflect the different
printout results coming from the formatting capabilities of the label
widget and from str, the generic textual rendering function of python.

Example files in directory 'examples' of distribution: program 'gtk_label.py' , Glade descriptor
'gtk_label.glade'.

 8.4 Showcase example

This example shows a table of all widget/variable type combinations supported by AVC. The
program creates a window with three columns: the first shows the type of the connected
variable, the second shows all the widgets that can be connected to that type of variable, the
third shows the current value of each variable. Each row of the window represent a
widgets/variable combination as follows.

● Row 1: memoryless button with boolean variable, pressed = True,
unpressed = False.

● Row 2: buttons with memory, toggle and check buttons, pressed = True,
unpressed = False.

● Row 3: mutually exclusive choices widgets, radio buttons numbered from
0 to 2 and a combo box with 3 items, index variable = number of
checked radio button and selected item of combo box.

● Row 4: integer input/output widgets, spin button, entry and slider.
● Row 5: float input/output widgets, spin button, entry and slider.
● Row 6: string input/output widget, entry.
● Row 7: string input/output widget, text view/edit.
● Row 8: status messages, status bar.

Fabrizio Pollastri 24/80

AVC, Application View Controller User Manual

The text label widget is used in all output modes for the column of the connected variable
values. The program increment the value of each connected variable looping top-bottom at
three rows per seconds. The user can also change the values in the connected variables
interacting with the widgets.

 8.4.1 Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri
.license : GNU General Public License v3

import gobject #--
import gtk #- gimp tool kit bindings
import gtk.glade # glade bindings

from avc import * # AVC

GLADE_XML = 'gtk_showcase.glade' # GUI glade descriptor
INCREMENTER_PERIOD = 333 # ms

class Example(AVC):
 "A table of all supported widget/control type combinations"

 def __init__(self):

 # create GUI
 self.glade = gtk.glade.XML(GLADE_XML)

 # autoconnect GUI signal handlers
 self.glade.signal_autoconnect(self)

 # the control variables
 self.boolean1 = False
 self.boolean2 = False
 self.radio = 0
 self.integer = 0
 self.float = 0.0
 self.string = ''
 self.textview = ''
 self.status = ''

 # start variables incrementer
 increment = self.incrementer()
 gobject.timeout_add(INCREMENTER_PERIOD,increment.next)

 def incrementer(self):
 """
 Booleans are toggled, radio button index is rotated from first to last,
 integer is incremented by 1, float by 0.5, string is appended a char
 until maxlen when string is cleared, text view/edit is appended a line
 of text until maxlen when it is cleared. Status bar message is toggled.
 Return True to keep timer alive.
 """
 while True:

 self.boolean1 = not self.boolean1
 yield True

Fabrizio Pollastri 25/80

AVC, Application View Controller User Manual

 self.boolean2 = not self.boolean2
 yield True

 if self.radio >= 2:
 self.radio = 0
 else:
 self.radio += 1
 yield True

 self.integer += 1
 yield True

 self.float += 0.5
 yield True

 if len(self.string) >= 10:
 self.string = ''
 else:
 self.string += 'A'
 yield True

 if len(self.textview) >= 200:
 self.textview = ''
 else:
 self.textview += 'line of text, line of text, line of text\n'
 yield True

 if not self.status:
 self.status = 'status message'
 else:
 self.status = ''
 yield True

 def on_destroy(self,window):
 "Terminate program at window destroy"
 gtk.main_quit()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit

END

The GUI layout was previously edited with Glade and saved to the file ‘gtk_showcase.glade’.

The key points of the example regarding AVC are the following.

● During Glade editing, the following names were given to the widgets.
Row widget name

1
button boolean1__button
output value label boolean1__var

2
togglebutton boolean2__togglebutton
checkbutton boolean2__checkbutton
output value label boolean2__var

3
radiobutton0 radio__radiobutton0
radiobutton1 radio__radiobutton1

Fabrizio Pollastri 26/80

AVC, Application View Controller User Manual

radiobutton2 radio__radiobutton2
combobox radio__combobox
output value label radio__var

4

spinbutton integer__spinbutton
entry integer__entry
slider integer__slider
output value label integer__var

5

spinbutton float__spinbutton
entry float__entry
slider float__slider
output value label float__var

6 entry string__entry
output value label string__var

7 textview textview__textview
output value label textview__var

8 statusbar status__statusbar
output value label status__var

● The AVC package is imported at program begin (from avc import *).
● The application class is derived from the AVC class (class Example(AVC):).
● The following variables are declared in the application.

 self.boolean1 = False
 self.boolean2 = False
 self.radio = 0
 self.integer = 0
 self.float = 0.0
 self.string = ''
 self.textview = ''
 self.status = ''

● The avc_init method is called after the instantation of the application
class (example.avc_init()) to realize the connections of all widegts/variable
combinations and to initialize the widgets values with the initial value of
the connected variable .

Example files in directory 'examples' of distribution: program 'gtk_showcase.py' , Glade
descriptor 'gtk_showcase.glade'.

 8.5 Countdown example

This example continuously creates at random intervals windows displaying a counter. Each
counter starts from 10 and is independently decremented. When the count reaches zero, the
counter window is destroyed. Also a main window with a “close all windows” button is
displayed.

Fabrizio Pollastri 27/80

AVC, Application View Controller User Manual

 8.5.1 Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

import gobject #--
import gtk #- gimp tool kit bindings
import gtk.glade # glade bindings

from avc import * # AVC

from random import randint # random integer generator

GLADE_XML_MAIN = 'gtk_countdown_main.glade' # main window glade descriptor
GLADE_XML_CD = 'gtk_countdown.glade' # count down window glade descriptor
TOPLEVEL_NAME = 'countdown' # name of the top level widget
COUNTDOWN_PERIOD = 500 # count down at 2 unit per second
MAX_CREATION_PERIOD = 4000 # create a new count down at 1/2 this

class Countdown(AVC):
 """
 A countdown counter displayed in a Label widget. Count starts at given
 value. When count reaches zero the counter and its GUI are destroyed.
 """

 def __init__(self,count_start=10):

 # create GUI
 self.glade = gtk.glade.XML(GLADE_XML_CD)

 # autoconnect GUI signal handlers
 self.glade.signal_autoconnect(self)

 # init the counter variable
 self.counter = count_start

 # connect counter variable with label widget
 self.avc_connect(self.glade.get_widget(TOPLEVEL_NAME))

 # start count down
 gobject.timeout_add(COUNTDOWN_PERIOD,self.decrementer)

 def decrementer(self):
 "Counter decrementer. Return False to destroy previous timer."

 self.counter -= 1

 if self.counter:
 # if counter not zero: reschedule count timer
 gobject.timeout_add(COUNTDOWN_PERIOD,self.decrementer)
 else:
 # counter reached zero: destroy this countdown and its GUI
 self.glade.get_widget(TOPLEVEL_NAME).destroy()

 return False

Fabrizio Pollastri 28/80

AVC, Application View Controller User Manual

class Example(AVC):
 """
 Continuously create at random intervals windows with a countdown from 10 to 0.
 When a countdown reaches zero, its window is destroyed. Also create a main
 window with a "close all" button.
 """

 def __init__(self):

 # create main window
 self.glade = gtk.glade.XML(GLADE_XML_MAIN)

 # create the first countdown
 self.new_countdown()

 # close all button connected variable
 self.close_all = False

 # autoconnect GUI signal handlers
 self.glade.signal_autoconnect(self)

 def new_countdown(self,count_start=10):
 "Create a new countdown"

 # create a new countdown
 Countdown(count_start)

 # autocall after a random delay
 gobject.timeout_add(randint(1,MAX_CREATION_PERIOD),self.new_countdown)

 return False # destroy previous timer

 def on_destroy(self,window):
 "Terminate program at window destroy"
 gtk.main_quit()

 def close_all_changed(self,value):
 "Terminate program at 'close all' button pressing"
 gtk.main_quit()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit

END

The GUI layout was previously edited with Glade and saved to the file
‘gtk_countdown_main.glade’ for the main window and to the file 'gtk_countdown.glade' for the
counter windows.

The key points of the example regarding AVC are the following.

● During Glade editing of the main window, the name 'close_all' was given to the button
widget; during Glade editing of the counter window, the name 'counter' was given to

Fabrizio Pollastri 29/80

AVC, Application View Controller User Manual

the label widget.

● The AVC package is imported at program begin (from avc import *).
● Both the application class and the counter class are derived from the AVC class (class

Example(AVC): | class Countdown(AVC):).
● A boolean variable with an initial value of False and name 'close_all' is declared in the

application (self.close_all = False).
● The method 'close_all_changed' is defined in the application to handle the press event

of the 'close all windows' button.
● The avc_init method is called after the instantiation of the application class

(example.avc_init()) to init AVC logic and to realize the connection of the 'close all
windows' button to the 'close_all' variable.

● A integer variable with an initial default value of 10 and name 'counter' is declared in
the Countdown class (self.counter = count_start)

● The avc_connect method is called at the instantation of the Countdown class
(self.avc_connect(self.glade.get_widget(TOPLEVEL_NAME))) with argument the window
widget of the counter. This call realizes the connection of the label widget to the
'counter' variable.

Example files in directory 'examples' of distribution: program 'gtk_countdown.py' , Glade
descriptors 'gtk_countdown_main.glade' anc 'gtk_countdown.glade'.

Fabrizio Pollastri 30/80

AVC, Application View Controller User Manual

 9 Qt3 examples

 9.1 Spin box example
For a functional description of the graphic interface see the GTK+ “Spin button example“ at
page 19.

 9.1.1 Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri
.license : GNU General Public License v3

from qt import * # Qt interface
from qtui import * # ui files realizer
import sys # system support

from avc import * # AVC

UI_FILE = 'qt3_spinbox.ui'

class Example(QApplication,AVC):
 "A spin box whose value is replicated into a text label"

 def __init__(self):

 # create GUI
 QApplication.__init__(self,sys.argv)
 self.root = QWidgetFactory.create(UI_FILE)
 self.setMainWidget(self.root)
 self.root.show()

 # the variable holding the spinbox value
 self.spin_value = 0

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec_loop() # run Qt event loop until quit

END

The GUI layout was previously edited with Qt3 Designer and saved to the file ‘qt3_spinbox.ui’.

Fabrizio Pollastri 31/80

AVC, Application View Controller User Manual

The key points of the example regarding AVC are the following.

● During Qt3 Designer editing, the name 'spin_value__spinbox' was given to the spin
box and the name 'spin_value__label' was given to the label.

● The AVC packge is imported at program begin (from avc import *).
● The application class is derived from the QApplication class of Qt3 and from the AVC

class of AVC (class Example(QApplication,AVC):).
● A integer variable with an initial value of 0 and name 'spin_value' is

declared in the application (self.spin_value = 0).
● The avc_init method is called after the instantation of the application class

(example.avc_init()) to realize the connections of the two widgets through the
'spin_value' variable and to initialize the widgets values with the initial value of the
variable .

Example files in directory 'examples' of distribution: program 'qt3_spinbox.py', UI descriptor
'qt3_spinbox.ui'.

 9.2 Counter example
For a functional description of the graphical interface see the GTK+ “Counter example”at page
20.

 9.2.1 Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri
.license : GNU General Public License v3

from qt import * # Qt interface
from qtui import * # ui files realizer
import sys # system support

from avc import * # AVC

UI_FILE = 'qt3_counter.ui' # qt ui descriptor
LOW_SPEED = 0.5 #--
HIGH_SPEED = 0.1 #- low and high speed period (secs)

class ExampleGUI(QApplication):
 "Counter GUI creation"

 def __init__(self):

 # create GUI
 QApplication.__init__(self,sys.argv)
 self.root = QWidgetFactory.create(UI_FILE)
 self.setMainWidget(self.root)
 self.root.show()

Fabrizio Pollastri 32/80

AVC, Application View Controller User Manual

 def timer(self,period,function):
 "Start a Qt timer calling back 'function' every 'period' seconds."
 self.timer1 = QTimer()
 QObject.connect(self.timer1,SIGNAL("timeout()"),function)
 self.timer1.start(int(period * 1000.0))

 def timer_set_period(self,period):
 "Set a new period to timer"
 self.timer1.stop()
 self.timer1.start(int(period * 1000.0))

class ExampleMain(AVC):
 """
 A counter displayed in a Label widget whose count speed can be
 accelerated by checking a check box.
 """

 def __init__(self,gui):

 # save GUI
 self.gui = gui

 # the counter variable and its speed status
 self.counter = 0
 self.high_speed = False

 # start incrementer timer
 self.gui.timer(LOW_SPEED,self.incrementer)

 def incrementer(self):
 """
 Counter incrementer: increment period = LOW_SPEED, if high speed
 is False, increment period = HIGH_SPEED otherwise.
 """
 self.counter += 1
 if self.high_speed:
 period = HIGH_SPEED
 else:
 period = LOW_SPEED
 self.gui.timer_set_period(period)

 def high_speed_changed(self,value):
 "Notify change of counting speed to terminal"
 if value:
 print 'counting speed changed to high'
 else:
 print 'counting speed changed to low'

MAIN

example_gui = ExampleGUI() # create the application GUI
example = ExampleMain(example_gui) # instantiate the application
example.avc_init() # connect widgets with variables
example_gui.exec_loop() # run Qt event loop until quit

END

Fabrizio Pollastri 33/80

AVC, Application View Controller User Manual

The GUI layout was previously edited with Qt3 Designer and saved to the file ‘qt3_counter.ui’.

The key points of the example regarding AVC are the following.

● During Glade editing, the name 'counter' was given to the label and the name
'high_speed' was given to the check button.

● The AVC package is imported at program begin (from avc import *).

● The application class is derived from the QApplication class of Qt3 and from the AVC
class of AVC (class Example(QApplication,AVC):).

● A integer variable with an initial value of 0 and name 'counter' is declared in the
application to hold the counter value (self.counter = 0). A boolean variable with an
initial value of False and name 'high_speed' is declared in the application to hold the
speed status of the counter increment (self.high_speed = False).

● The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections between the 'counter' variable and the
label widget and between the the 'high_speed' variable and the check button, the label
widget is initialized with the initial value of the 'counter' variable .

Example files in directory 'examples' of distribution: program 'qt3_counter.py', UI descriptor
'qt3_counter.ui'.

 9.3 Label example
This example shows the formatting capabilities of the label widget. For each supported type of
the connected variable, a formatting string is defined and a sample value of the connected
variable is displayed into two label widgets: one with formatting and the other with the
standard python string representation.

 9.3.1 Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

Fabrizio Pollastri 34/80

AVC, Application View Controller User Manual

from qt import * # Qt interface
from qtui import * # ui files realizer
import sys # system support

from avc import * # AVC

UI_FILE = 'qt3_label.ui' # qt ui descriptor

class Example(QApplication,AVC):
 """
 Showcase of formatting capabilities for the label widget
 """

 def __init__(self):

 # create GUI
 QApplication.__init__(self,sys.argv)
 self.root = QWidgetFactory.create(UI_FILE)
 self.setMainWidget(self.root)
 self.root.show()

 # all types of connected variables
 self.bool_value = True
 self.float_value = 1.0
 self.int_value = 1
 self.list_value = [1,2,3]
 self.str_value = 'abc'
 self.tuple_value = (1,2,3)
 class Obj:
 "A generic object with 2 attributes x,y"
 def __init__(self):
 self.x = 1
 self.y = 2
 self.obj_value = Obj()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec_loop() # run Qt event loop until quit

END

The GUI layout was previously edited with Qt3 Designer and saved to the file ‘qt3_label.ui’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

● For each control type (for each row) the two label widgets, one in the
column “Label with format” and one in the column “Label without
format”, are connected to the variable of the corresponding type. For
example, in row “boolean”, both label widgets are called “bool_value”, so
they connect to the variable self.bool_value .

● When the Qt3 event loop is entered both columns are set to display the
initial values of the connected variables. For example, in row “integer”,

Fabrizio Pollastri 35/80

AVC, Application View Controller User Manual

both labels are set to display the integer value 1.
● The differences of representation between the column “Label with

format” and the column “Label without format” reflect the different
printout results coming from the formatting capabilities of the label
widget and from str, the generic textual rendering function of python.

Example files in directory 'examples' of distribution: program 'qt3_label.py' , UI descriptor
'qt3_label.ui'.

 9.4 Showcase example

This example shows a table of all widget/variable type combinations supported by AVC. The
program creates a window with three columns: the first shows the type of the connected
variable, the second shows all the widgets that can be connected to that type of variable, the
third shows the current value of each variable. Each row of the window represent a
widgets/variable combination.

● Row 1: memoryless button with boolean variable, pressed = True, unpressed = False.

● Row 2: buttons with memory, toggle and check buttons, pressed = True, unpressed =
False.

● Row 3: mutually exclusive choices widgets, radiobuttons numbered from 0 to 2 and a
combo box with 3 items, index variable = number of checked radiobutton and selected
item of combo box.

● Row 4: integer input/output widgets, spin button, entry and slider.

● Row 5: float input/output widget, entry.

● Row 6: string input/output widget, entry.

Fabrizio Pollastri 36/80

AVC, Application View Controller User Manual

● Row 7: string input/output widget, text view/edit.

The text label widget is used in all output modes for the column of the connected variable
values. The program increment the value of each connected variable looping top-bottom at
three rows per seconds. The user can also change the values of the connected variables
interacting with the widgets.

 9.4.1 Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri
.license : GNU General Public License v3

from qt import * # Qt interface
from qtui import * # ui files realizer
import sys # system support

from avc import * # AVC

UI_FILE = 'qt3_showcase.ui' # qt ui descriptor
INCREMENTER_PERIOD = 333 # ms

class Example(QApplication,AVC):
 "A table of all supported widget/control type combinations"

 def __init__(self):

 # create GUI
 QApplication.__init__(self,sys.argv)
 self.root = QWidgetFactory.create(UI_FILE)
 self.setMainWidget(self.root)
 self.root.show()

 # the control variables
 self.boolean1 = False
 self.boolean2 = False
 self.radio = 0
 self.integer = 0
 self.float = 0.0
 self.string = ''
 self.textview = ''

 # start variables incrementer
 self.increment = self.incrementer()
 self.timer = qt.QTimer(self)
 self.connect(self.timer,qt.SIGNAL("timeout()"),self.timer_function)
 self.timer.start(INCREMENTER_PERIOD)

 def timer_function(self):
 self.increment.next()

 def incrementer(self):
 """
 Booleans are toggled, radio button index is rotated from first to last,
 integer is incremented by 1, float by 0.5, string is appended a char
 until maxlen when string is cleared, text view/edit is appended a line
 of text until maxlen when it is cleared.

Fabrizio Pollastri 37/80

AVC, Application View Controller User Manual

 Return True to keep timer alive.
 """
 while True:

 self.boolean1 = not self.boolean1
 yield True

 self.boolean2 = not self.boolean2
 yield True

 if self.radio == 2:
 self.radio = 0
 else:
 self.radio += 1
 yield True

 self.integer += 1
 yield True

 self.float += 0.5
 yield True

 if len(self.string) >= 10:
 self.string = 'A'
 else:
 self.string += 'A'
 yield True

 if len(self.textview) >= 200:
 self.textview = ''
 else:
 self.textview += 'line of text, line of text, line of text\n'
 yield True

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec_loop() # run Qt event loop until quit

END

The GUI layout was previously edited with Qt3 Designer and saved to the file ‘qt3_showcase.ui’.

The key points of the example regarding AVC are the following.

● During Glade editing, the following names were given to the widgets.

widget name

Row 1:

button boolean1__button

output value label boolean1__var

Row 2:

togglebutton boolean2__togglebutton

checkbutton boolean2__checkbutton

output value label boolean2__var

Row 3:

Fabrizio Pollastri 38/80

AVC, Application View Controller User Manual

radiobutton0 radio__radiobutton0

radiobutton1 radio__radiobutton1

radiobutton2 radio__radiobutton2

combobox radio__combobox

output value label radio__var

Row 4:

spinbutton integer__spinbox

entry integer__entry

slider integer__slider

output value label integer__var

Row 5:

entry float__entry

output value label float__var

Row 6:

entry string__entry

output value label string__var

Row 7:

textview textview__textview

output value label textview__var

● The AVC package is imported at program begin (from avc import *).
● The application class is derived from the QApplication class of Qt3 and from the AVC

class of AVC (class Example(QApplication,AVC):).
● The following variables are declared in the application.

 self.boolean1 = False
 self.boolean2 = False
 self.radio = 0
 self.integer = 0
 self.float = 0.0
 self.string = ''
 self.textview = ''

● The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections of all widegts/variable combinations and
to initialize the widgets values with the initial value of the connected variable.

Example files in directory 'examples' of distribution: program 'qt3_showcase.py', UI descriptor
'qt3_showcase.ui'.

Fabrizio Pollastri 39/80

AVC, Application View Controller User Manual

 9.5 Countdown example

This example continuously creates at random intervals windows displaying a counter. Each
counter starts from 10 and is independently decremented. When the count reaches zero, the
counter window is destroyed. Also a main window with a “close all windows” button is
displayed.

 9.5.1 Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

from qt import * # Qt interface
from qtui import * # ui files realizer
import sys # system support

from avc import * # AVC

from random import randint # random integer generator

UI_MAIN = 'qt3_countdown_main.ui' # qt ui descriptor for main window
UI_CD = 'qt3_countdown.ui' # qt ui descriptor for countdown window
TOPLEVEL_NAME = 'countdown' # name of the top level widget
COUNTDOWN_PERIOD = 500 # count down at 2 unit per second
MAX_CREATION_PERIOD = 4000 # create a new count down at 1/2 this

class Countdown(AVC):
 """
 A countdown counter displayed in a Label widget. Count starts at given
 value. When count reaches zero the counter and its GUI are destroyed.
 """

 def __init__(self,count_start=10):

 # create GUI
 self.root = QWidgetFactory.create(UI_CD)
 self.root.show()

 # init the counter variable
 self.counter = count_start

 # connect counter variable with label widget
 self.avc_connect(self.root)

Fabrizio Pollastri 40/80

AVC, Application View Controller User Manual

 # start count down
 self.timer = QTimer(self.root)
 self.root.connect(self.timer,SIGNAL("timeout()"),self.decrementer)
 self.timer.start(COUNTDOWN_PERIOD)

 def decrementer(self):
 "Counter decrementer. Return False to destroy previous timer."
 self.counter -= 1
 # if counter reached zero, destroy this countdown and its GUI
 if not self.counter:
 self.timer.stop()
 del self.timer
 self.root.close()

class Example(QApplication,AVC):
 """
 Continuosly create at random intervals windows with a countdown from 10 to 0.
 When a countdown reaches zero, its window is destroyed. Also create a main
 window with a "close all" button.
 """

 def __init__(self):

 # create main window
 QApplication.__init__(self,sys.argv)
 self.root = QWidgetFactory.create(UI_MAIN)
 self.setMainWidget(self.root)
 self.root.show()

 # close all button connected variable
 self.close_all = False

 # start count down
 self.timer = QTimer(self)
 self.connect(self.timer,SIGNAL("timeout()"),self.new_countdown)
 self.timer.start(randint(1,MAX_CREATION_PERIOD))

 def new_countdown(self,count_start=10):
 "Create a new countdown"

 # create a new countdown
 Countdown(count_start)

 # autocall after a random delay
 self.timer.stop()
 self.timer.start(randint(1,MAX_CREATION_PERIOD))

 def close_all_changed(self,value):
 "Terminate program at 'close all' button pressing"
 self.quit()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec_loop() # run Qt event loop until quit

Fabrizio Pollastri 41/80

AVC, Application View Controller User Manual

END

The GUI layout was previously edited with Qt Designer and saved to the file
‘qt3_countdown_main.ui’ for the main window and to the file 'qt3_countdown.ui' for the counter
windows.

The key points of the example regarding AVC are the following.

● During Designer editing of the main window, the name 'close_all' was given to the
button widget; during Designer editing of the counter window, the name 'counter' was
given to the label widget.

● The AVC package is imported at program begin (from avc import *).
● Both the application class and the counter class are derived from the AVC class (class

Example(QApplication,AVC): | class Countdown(AVC):).
● A boolean variable with an initial value of False and name 'close_all' is declared in the

application (self.close_all = False).
● The method 'close_all_changed' is defined in the application to handle the press event

of the 'close all windows' button.
● The avc_init method is called after the instantiation of the application class

(example.avc_init()) to init AVC logic and to realize the connection of the 'close all
windows' button to the 'close_all' variable.

● A integer variable with an initial default value of 10 and name 'counter' is declared in
the Countdown class (self.counter = count_start)

● The avc_connect method is called at the instantation of the Countdown class
(self.avc_connect(self.root)) with argument the window widget of the counter. This
call realizes the connection of the label widget to the 'counter' variable.

Example files in directory 'examples' of distribution: program 'qt3_countdown.py' , Qt Designer
descriptors 'qt3_countdown_main.ui' anc 'qt3_countdown.ui'.

Fabrizio Pollastri 42/80

AVC, Application View Controller User Manual

 10 Qt4 examples

 10.1 Spin box example
For a functional description of the graphic interface see the GTK+ “Spin button example“ at
page 19.

 10.1.1 Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri
.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core
from PyQt4.QtGui import * # Qt GUI interface
from PyQt4.uic import * # ui files realizer
import sys # system support

from avc import * # AVC

UI_FILE = 'qt4_spinbox.ui' # qt ui descriptor

class Example(QApplication,AVC):
 "A spin box whose value is replicated into a text label"

 def __init__(self):

 # create GUI
 QApplication.__init__(self,sys.argv)
 self.root = loadUi(UI_FILE)
 self.root.show()

 # the variable holding the spin box value
 self.spin_value = 0

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec_() # run Qt event loop until quit

END

The GUI layout was previously edited with Qt4 Designer and saved to the file ‘qt4_spinbox.ui’.

Fabrizio Pollastri 43/80

AVC, Application View Controller User Manual

The key points of the example regarding AVC are the following.

● During Qt4 Designer editing, the name 'spin_value__spinbox' was given to the spin
box and the name 'spin_value__label' was given to the label.

● The AVC package is imported at program begin (from avc import *).
● The application class is derived from the QApplication class of Qt4 and from the AVC

class of AVC (class Example(QApplication,AVC):).
● A integer variable with an initial value of 0 and name 'spin_value' is declared in the

application (self.spin_value = 0).
● The avc_init method is called after the instantation of the application class

(example.avc_init()) to realize the connections of the two widgets through the
'spin_value' variable and to initialize the widgets values with the initial value of the
variable .

Example files in directory 'examples' of distribution: program 'qt4_spinbox.py', UI descriptor
'qt4_spinbox.ui'.

 10.2 Counter example
For a functional description of the graphical interface see the GTK+ “Counter example“ at
page 20.

 10.2.1 Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri
.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core
from PyQt4.QtGui import * # Qt GUI interface
from PyQt4.uic import * # ui files realizer
import sys # system support

from avc import * # AVC

UI_FILE = 'qt4_counter.ui' # qt ui descriptor
LOW_SPEED = 0.5 #--
HIGH_SPEED = 0.1 #- low and high speed count period (sec)

class ExampleGUI(QApplication):
 "Counter GUI creation"

 def __init__(self):

 # create GUI
 QApplication.__init__(self,sys.argv)
 self.root = loadUi(UI_FILE)
 self.root.show()

 def timer_start(self,period,function):

Fabrizio Pollastri 44/80

AVC, Application View Controller User Manual

 "Start a Qt timer calling back 'function' every 'period' seconds."
 self.timer1 = QTimer()
 QObject.connect(self.timer1,SIGNAL("timeout()"),function)
 self.timer1.start(int(period * 1000.0))

 def timer_set_period(self,period):
 "Set a new period to timer"
 self.timer1.stop()
 self.timer1.start(int(period * 1000.0))

class ExampleMain(AVC):
 """
 A counter displayed in a Label widget whose count speed can be
 accelerated by checking a check box.
 """

 def __init__(self,gui):

 # save GUI
 self.gui = gui

 # the counter variable and its speed status
 self.counter = 0
 self.high_speed = False

 # start incrementer timer
 self.gui.timer_start(LOW_SPEED,self.incrementer)

 def incrementer(self):
 """
 Counter incrementer: increment period = LOW_SPEED, if high speed
 is False, increment period = HIGH_SPEED otherwise.
 """
 self.counter += 1
 if self.high_speed:
 period = HIGH_SPEED
 else:
 period = LOW_SPEED
 self.gui.timer_set_period(period)

 def high_speed_changed(self,value):
 "Notify change of counting speed to terminal"
 if value:
 print 'counting speed changed to high'
 else:
 print 'counting speed changed to low'

MAIN

example_gui = ExampleGUI() # create the application GUI
example = ExampleMain(example_gui) # instantiate the application
example.avc_init() # connect widgets with variables
example_gui.exec_() # run Qt event loop until quit

END

The GUI layout was previously edited with Qt4 Designer and saved to the file ‘qt4_counter.ui’.

Fabrizio Pollastri 45/80

AVC, Application View Controller User Manual

The key points of the example regarding AVC are the following.

● During Qt4 Designer editing, the name 'counter' was given to the label and the name
'high_speed' was given to the check button.

● The AVC package is imported at program begin (from avc import *).

● The application class is derived from the QApplication class of Qt4 and from the AVC
class of AVC. (class Example(QApplication,AVC):).

● A integer variable with an initial value of 0 and name 'counter' is declared in the
application to hold the counter value (self.counter = 0).

● A boolean variable with an initial value of False and name 'high_speed' is declared in
the application to hold the speed status of the counter increment speed
(self.high_speed = False).

● The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections between the 'counter' variable and the
label widget and between the the 'high_speed' variable and the check button, the label
widget is initialized with the initial value of the 'counter' variable .

Example files in directory 'examples' of distribution: program 'qt4_counter.py', UI descriptor
'qt4_counter.ui'.

 10.3 Label example
This example shows the formatting capabilities of the label widget. For each supported type of
the connected variable, a formatting string is defined and a sample value of the connected
variable is displayed into two label widgets: one with formatting and the other with the
standard python string representation.

 10.3.1 Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

Fabrizio Pollastri 46/80

AVC, Application View Controller User Manual

from PyQt4.QtCore import * # Qt core
from PyQt4.QtGui import * # Qt GUI interface
from PyQt4.uic import * # ui files realizer
import sys # system support

from avc import * # AVC

UI_FILE = 'qt4_label.ui' # qt ui descriptor

class Example(QApplication,AVC):
 """
 Showcase of formatting capabilities for the label widget
 """

 def __init__(self):

 # create GUI
 QApplication.__init__(self,sys.argv)
 self.root = loadUi(UI_FILE)
 self.root.show()

 # all types of connected variables
 self.bool_value = True
 self.float_value = 1.0
 self.int_value = 1
 self.list_value = [1,2,3]
 self.str_value = 'abc'
 self.tuple_value = (1,2,3)
 class Obj:
 "A generic object with 2 attributes x,y"
 def __init__(self):
 self.x = 1
 self.y = 2
 self.obj_value = Obj()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec_() # run Qt event loop until quit

END

The GUI layout was previously edited with Qt4 Designer and saved to the file ‘qt4_label.ui’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

● For each control type (for each row) the two label widgets, one in the
column “Label with format” and one in the column “Label without
format”, are connected to the variable of the corresponding type. For
example, in row “boolean”, both label widgets are called “bool_value”, so
they connect to the variable self.bool_value .

● When the Qt4 event loop is entered both columns are set to display the
initial values of the connected variables. For example, in row “integer”,

Fabrizio Pollastri 47/80

AVC, Application View Controller User Manual

both labels are set to display the integer value 1.
● The differences of representation between the column “Label with

format” and the column “Label without format” reflect the different
printout results coming from the formatting capabilities of the label
widget and from str, the generic textual rendering function of python.

Example files in directory 'examples' of distribution: program 'qt4_label.py' , UI descriptor
'qt4_label.ui'.

 10.4 Showcase example

This example shows a table of all widget/variable type combinations supported by AVC. The
program creates a window with three columns: the first shows the type of the connected
variable, the second shows all the widgets that can be connected to that type of variable, the
third shows the current value of each variable. Each row of the window represent a
widgets/variable combination.

● Row 1: memoryless button with boolean variable, pressed = True, unpressed = False.

● Row 2: buttons with memory, toggle and check buttons, pressed = True, unpressed =
False.

● Row 3: mutually exclusive choices widgets, radio buttons numbered from 0 to 2 and a
combo box with 3 items, index variable = number of checked radio button and selected
item of combo box.

● Row 4: integer input/output widgets, spin button, entry and slider.

● Row 5: float input/output widgets, spin button and entry.

● Row 6: string input/output widget, entry.

● Row 7: string input/output widget, text view/edit.

Fabrizio Pollastri 48/80

AVC, Application View Controller User Manual

The text label widget is used in all output modes for the column of the connected variable
values. The program increment the value of each connected variable looping top-bottom at
three rows per seconds. The user can also change the values of the connected variables
interacting with the widgets.

 10.4.1 Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri
.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core
from PyQt4.QtGui import * # Qt GUI interface
from PyQt4.uic import * # ui files realizer
import sys # system support

from avc import * # AVC

UI_FILE = 'qt4_showcase.ui' # qt ui descriptor
INCREMENTER_PERIOD = 333 # ms

class Example(QApplication,AVC):
 """
 A table of all supported widget/control type combinations
 """

 def __init__(self):

 # create GUI
 QApplication.__init__(self,sys.argv)
 self.root = loadUi(UI_FILE)
 self.root.show()

 # group all radio buttons into a button group. Button group not
 # managed by Qt4 Designer ?!
 self.radio_button0 = self.root.findChild(QWidget,'radio__button0')
 self.radio_button1 = self.root.findChild(QWidget,'radio__button1')
 self.radio_button2 = self.root.findChild(QWidget,'radio__button2')
 self.radio_button_group = QButtonGroup()
 self.radio_button_group.addButton(self.radio_button0,0)
 self.radio_button_group.addButton(self.radio_button1,1)
 self.radio_button_group.addButton(self.radio_button2,2)

 # the control variables
 self.boolean1 = False
 self.boolean2 = False
 self.radio = 0
 self.integer = 0
 self.float = 0.0
 self.string = ''
 self.textview = ''

 # start variables incrementer
 self.increment = self.incrementer()
 self.timer = QTimer(self)
 self.connect(self.timer,SIGNAL("timeout()"),self.timer_function)
 self.timer.start(int(INCREMENTER_PERIOD))

Fabrizio Pollastri 49/80

AVC, Application View Controller User Manual

 def timer_function(self):
 self.increment.next()

 def incrementer(self):
 """
 Booleans are toggled, radio button index is rotated from first to last,
 integer is incremented by 1, float by 0.5, string is appended a char
 until maxlen when string is cleared, text view/edit is appended a line
 of text until maxlen when text is cleared, status bar message is toggled.
 Return True to keep timer alive.
 """
 while True:

 self.boolean1 = not self.boolean1
 yield True

 self.boolean2 = not self.boolean2
 yield True

 if self.radio == 2:
 self.radio = 0
 else:
 self.radio += 1
 yield True

 self.integer += 1
 yield True

 self.float += 0.5
 yield True

 if len(self.string) >= 10:
 self.string = 'A'
 else:
 self.string += 'A'
 yield True

 if len(self.textview) >= 200:
 self.textview = ''
 else:
 self.textview += 'line of text, line of text, line of text\n'
 yield True

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec_() # run Qt event loop until quit

END

The GUI layout was previously edited with Qt4 Designer and saved to the file ‘qt4_showcase.ui’.

The key points of the example regarding AVC are the following.

● During Qt designer editing, the following names were given to the widgets.

widget name

Row 1:

Fabrizio Pollastri 50/80

AVC, Application View Controller User Manual

button boolean1__button

output value label boolean1__var

Row 2:

togglebutton boolean2__togglebutton

checkbutton boolean2__checkbutton

output value label boolean2__var

Row 3:

radiobutton0 radio__radiobutton0

radiobutton1 radio__radiobutton1

radiobutton2 radio__radiobutton2

combobox radio__combobox

output value label radio__var

Row 4:

spinbutton integer__spinbox

entry integer__entry

slider integer__slider

output value label integer__var

Row 5:

spinbutton float__spinbutton

entry float__entry

output value label float__var

Row 6:

entry string__entry

output value label string__var

Row 7:

textview textview__textview

output value label textview__var

● The AVC package is imported at program begin (from avc import *).

● The application class is derived from the QApplication class of Qt4 and from the AVC
class of AVC (class Example(QApplication,AVC):).

● The following variables are declared in the application.

 self.boolean1 = False
 self.boolean2 = False
 self.radio = 0
 self.integer = 0
 self.float = 0.0
 self.string = ''
 self.textview = ''

● The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections of all widegts/variable combinations and
to initialize the widgets values with the initial value of the connected variable.

Example files in directory 'examples' of distribution: program 'qt4_showcase.py', UI descriptor
'qt4_showcase.ui'.

Fabrizio Pollastri 51/80

AVC, Application View Controller User Manual

 10.5 Countdown example

This example continuously creates at random intervals windows displaying a counter. Each
counter starts from 10 and is independently decremented. When the count reaches zero, the
counter window is destroyed. Also a main window with a “close all windows” button is
displayed.

 10.5.1 Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core
from PyQt4.QtGui import * # Qt GUI interface
from PyQt4.uic import * # ui files realizer
import sys # system support

from avc import * # AVC

from random import randint # random integer generator

UI_MAIN = 'qt4_countdown_main.ui' # qt ui descriptor for main window
UI_CD = 'qt4_countdown.ui' # qt ui descriptor for countdown window
TOPLEVEL_NAME = 'countdown' # name of the top level widget
COUNTDOWN_PERIOD = 500 # count down at 2 unit per second
MAX_CREATION_PERIOD = 4000 # create a new count down at 1/2 this

class Countdown(AVC):
 """
 A countdown counter displayed in a Label widget. Count starts at given
 value. When count reaches zero the counter and its GUI are destroyed.
 """

 def __init__(self,count_start=10):

 # create GUI
 self.root = loadUi(UI_CD)
 self.root.show()

 # init the counter variable
 self.counter = count_start

 # connect counter variable with label widget
 self.avc_connect(self.root)

Fabrizio Pollastri 52/80

AVC, Application View Controller User Manual

 # start count down
 self.timer = QTimer(self.root)
 self.root.connect(self.timer,SIGNAL("timeout()"),self.decrementer)
 self.timer.start(COUNTDOWN_PERIOD)

 def decrementer(self):
 "Counter decrementer. Return False to destroy previous timer."
 self.counter -= 1
 # if counter reached zero, destroy this countdown and its GUI
 if not self.counter:
 self.timer.stop()
 del self.timer
 self.root.close()

class Example(QApplication,AVC):
 """
 Continuously create at random intervals windows with a countdown from 10 to 0.
 When a countdown reaches zero, its window is destroyed. Also create a main
 window with a "close all" button.
 """

 def __init__(self):

 # create main window
 QApplication.__init__(self,sys.argv)
 self.root = loadUi(UI_MAIN)
 self.root.show()

 # close all button connected variable
 self.close_all = False

 # start count down
 self.timer = QTimer(self)
 self.connect(self.timer,SIGNAL("timeout()"),self.new_countdown)
 self.timer.start(randint(1,MAX_CREATION_PERIOD))

 def new_countdown(self,count_start=10):
 "Create a new countdown"

 # create a new countdown
 Countdown(count_start)

 # autocall after a random delay
 self.timer.stop()
 self.timer.start(randint(1,MAX_CREATION_PERIOD))

 def close_all_changed(self,value):
 "Terminate program at 'close all' button pressing"
 self.quit()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec_() # run Qt event loop until quit

Fabrizio Pollastri 53/80

AVC, Application View Controller User Manual

END

The GUI layout was previously edited with Qt Designer and saved to the file
‘qt4_countdown_main.ui’ for the main window and to the file 'qt4_countdown.ui' for the counter
windows.

The key points of the example regarding AVC are the following.

● During Designer editing of the main window, the name 'close_all' was given to the
button widget; during Designer editing of the counter window, the name 'counter' was
given to the label widget.

● The AVC package is imported at program begin (from avc import *).

● Both the application class and the counter class are derived from the
AVC class (class Example(QApplication,AVC): | class Countdown(AVC):).

● A boolean variable with an initial value of False and name 'close_all' is declared in the
application (self.close_all = False).

● The method 'close_all_changed' is defined in the application to handle the press event
of the 'close all windows' button.

● The avc_init method is called after the instantiation of the application class
(example.avc_init()) to init AVC logic and to realize the connection of the 'close all
windows' button to the 'close_all' variable.

● A integer variable with an initial default value of 10 and name 'counter' is declared in
the Countdown class (self.counter = count_start)

● The avc_connect method is called at the instantation of the Countdown
class (self.avc_connect(self.root)) with argument the window widget of the
counter. This call realizes the connection of the label widget to the
'counter' variable.

Example files in directory 'examples' of distribution: program 'qt4_countdown.py' , Qt Designer
descriptors 'qt4_countdown_main.ui' anc 'qt4_countdown.ui'.

Fabrizio Pollastri 54/80

AVC, Application View Controller User Manual

 11 Tk examples

 11.1 Spin box example
For a functional description of the graphical interface see the GTK+ “Spin button example“ at
page 19 .

 11.1.1 Python source

#!/usr/bin/python
.copyright : (c) 2007 Fabrizio Pollastri
.license : GNU General Public License v3

from Tkinter import * # Tk interface

from avc import * # AVC

TCL_FILE = 'tk_spinbox.tcl' # GUI description as tcl script

class Example(AVC):
 """
 A spin control whose value is replicated into a label
 """

 def __init__(self):

 # create GUI
 self.root = Tk()
 self.root.eval('set argc {}; set argv {}; proc ::main {argc argv} {};')
 self.root.tk.evalfile(TCL_FILE)

 # terminate program at toplevel window destroy: connect toplevel
 # destroy signal to termination handler.
 self.root.bind_class('Toplevel','<Destroy>',lambda event: self.root.quit())

 # the variable holding the spin control value
 self.spin_value = 0

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
Tkinter.mainloop() # run Tk event loop until quit

END

The GUI layout was previously edited with Visual Tcl and saved to the file ‘tk_spinbox.tcl’.

Fabrizio Pollastri 55/80

AVC, Application View Controller User Manual

The key points of the example regarding AVC are the following.

● During Visual Tcl editing, the name 'spin_value__spinbox' was given to the spin box
and the name 'spin_value__label' was given to the label.

● The AVC package is imported at program begin (from avc import *).
● The application class is derived from the from the AVC class of AVC (class

Example(AVC):).
● A integer variable with an initial value of 0 and name 'spin_value' is declared in the

application (self.spin_value = 0).
● The avc_init method is called after the instantation of the application class, to realize

the connections of the two widgets through the 'spin_value' variable and to initialize
the widgets values with the initial value of the variable (example.avc_init()).

Example files in directory 'examples' of distribution: program 'tk_spinbox.py', graphic interface
descriptor as tcl script 'tk_spinbox.tcl'.

 11.2 Counter example
For a functional description of the graphical interface see the GTK+ “Counter example“ at
page 20.

 11.2.1 Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri
.license : GNU General Public License v3

from Tkinter import * # Tk interface

from avc import * # AVC

TCL_FILE = 'tk_counter.tcl' # GUI description as tcl script
LOW_SPEED = 500 #--
HIGH_SPEED = 100 #- low and high speed count period (ms)

class ExampleGUI:
 "Counter GUI creation"

 def __init__(self):

 # create GUI
 self.root = Tk()
 self.root.eval('set argc {}; set argv {}; proc ::main {argc argv} {};')
 self.root.tk.evalfile(TCL_FILE)

 # terminate program at toplevel window destroy: connect toplevel
 # destroy signal to termination handler.
 self.root.bind_class('Toplevel','<Destroy>',lambda event: self.root.quit())

 def timer(self,period,function):

Fabrizio Pollastri 56/80

AVC, Application View Controller User Manual

 "Start a Tk timer calling back 'function' every 'period' seconds."
 self.root.after(period,function)

class ExampleMain(AVC):
 """
 A counter displayed in a Label widget whose count speed can be doubled
 by pressing a Toggle Button.
 """

 def __init__(self,gui):

 # save GUI
 self.gui = gui

 # the counter variable and its speed status
 self.counter = 0
 self.high_speed = False

 # start incrementer timer
 self.gui.timer(LOW_SPEED,self.incrementer)

 def incrementer(self):
 """
 Counter incrementer: increment period = LOW_SPEED, if high speed is False,
 increment period = HIGH_SPEED otherwise.
 """
 self.counter += 1
 if self.high_speed:
 period = HIGH_SPEED
 else:
 period = LOW_SPEED
 self.gui.timer(period,self.incrementer)

 def high_speed_changed(self,value):
 "Notify change of counting speed to terminal"
 if value:
 print 'counting speed changed to high'
 else:
 print 'counting speed changed to low'

MAIN

example_gui = ExampleGUI() # create the application GUI
example = ExampleMain(example_gui) # instantiate the application
example.avc_init() # connect widgets with variables
mainloop() # run Tk event loop until quit

END

The GUI layout was previously edited with Visual Tcl and saved to the file ‘tk_counter.tcl’.

The key points of the example regarding AVC are the following.

● During Visual Tcl editing, the name 'counter' was given to the label and the name
'high_speed' was given to the check button.

● The AVC package is imported at program begin (from avc import *).

● The application class is derived from the AVC class of AVC. (class Example(AVC):).

Fabrizio Pollastri 57/80

AVC, Application View Controller User Manual

● A integer variable with an initial value of 0 and name 'counter' is declared in the
application to hold the counter value (self.counter = 0).

● A boolean variable with an initial value of False and name 'high_speed' is declared in
the application to hold the speed status of the counter increment (self.high_speed =
False).

● The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections between the 'counter' variable and the
label widget and between the the 'high_speed' variable and the check button, the label
widget is initialized with the initial value of the 'counter' variable .

Example files in directory 'examples' of distribution: program 'tk_counter.py', graphic interface
descriptor as tcl script 'tk_counter.tcl'.

 11.3 Label example
This example shows the formatting capabilities of the label widget. For each supported type of
the connected variable, a formatting string is defined and a sample value of the connected
variable is displayed into two label widgets: one with formatting and the other with the
standard python string representation.

 11.3.1 Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

from Tkinter import * # Tk interface

from avc import * # AVC

TCL_FILE = 'tk_label.tcl' # GUI description as tcl script

class Example(AVC):

Fabrizio Pollastri 58/80

AVC, Application View Controller User Manual

 """
 Showcase of formatting capabilities for the label widget
 """

 def __init__(self):

 # create GUI
 self.root = Tk()
 self.root.eval('set argc {}; set argv {}; proc ::main {argc argv} {};')
 self.root.tk.evalfile(TCL_FILE)

 # terminate program at toplevel window destroy: connect toplevel
 # destroy signal to termination handler.
 self.root.bind_class('Toplevel','<Destroy>',lambda event: self.root.quit())

 # all types of connected variables
 self.bool_value = True
 self.float_value = 1.0
 self.int_value = 1
 self.list_value = [1,2,3]
 self.str_value = 'abc'
 self.tuple_value = (1,2,3)
 class Obj:
 "A generic object with 2 attributes x,y"
 def __init__(self):
 self.x = 1
 self.y = 2
 self.obj_value = Obj()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
Tkinter.mainloop() # run Tk event loop until quit

END

The GUI layout was previously edited with Visual Tcl and saved to the file ‘tk_label.tcl’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

● For each control type (for each row) the two label widgets, one in the
column “Label with format” and one in the column “Label without
format”, are connected to the variable of the corresponding type. For
example, in row “boolean”, both label widgets are called “bool_value”, so
they connect to the variable self.bool_value .

● When the Tk event loop is entered both columns are set to display the
initial values of the connected variables. For example, in row “integer”,
both labels are set to display the integer value 1.

● The differences of representation between the column “Label with
format” and the column “Label without format” reflect the different
printout results coming from the formatting capabilities of the label
widget and from str, the generic textual rendering function of python.

Example files in directory 'examples' of distribution: program 'tk_label.py', graphic interface

Fabrizio Pollastri 59/80

AVC, Application View Controller User Manual

descriptor as tcl script 'tk_label.tcl'.

 11.4 Showcase example

This example shows a table of all widget/variable type combinations supported by AVC. The
program creates a window with three columns: the first shows the type of the connected
variable, the second shows all the widgets that can be connected to that type of variable, the
third shows the current value of each variable. Each row of the window represent a
widgets/variable combination as follows.

● Row 1: memoryless button with boolean variable, pressed = True,
unpressed = False.

● Row 2: button with memory, check button, pressed = True, unpressed =
False.

● Row 3: mutually exclusive choices widgets, radio buttons numbered from
0 to 2, index variable = number of checked radio button.

● Row 4: integer input/output widgets, spin button, entry and slider.
● Row 5: float input/output widgets, spin button, entry and slider.
● Row 6: string input/output widget, entry.
● Row 7: string input/output widget, text view/edit.

The text label widget is used in all output modes for the column of the connected variable
values. The program increment the value of each connected variable looping top-bottom at
three rows per seconds. The user can also change the values of the connected variables
interacting with the widgets.

 11.4.1 Python source

#!/usr/bin/python
.copyright : (c) 2007 Fabrizio Pollastri
.license : GNU General Public License v3

from Tkinter import * # Tk interface

from avc import * # AVC

TCL_FILE = 'tk_showcase.tcl' # GUI description as tcl script
INCREMENTER_PERIOD = 0.333 # seconds

class Example(AVC):

Fabrizio Pollastri 60/80

AVC, Application View Controller User Manual

 "A table of all supported widget/control type combinations"

 def __init__(self):

 # create GUI
 self.root = Tk()
 self.root.eval('set argc {}; set argv {}; proc ::main {argc argv} {};')
 self.root.tk.evalfile(TCL_FILE)

 # terminate program at toplevel window destroy: connect toplevel
 # destroy signal to termination handler.
 self.root.bind_class('Toplevel','<Destroy>',lambda event: self.root.quit())

 # the control variables
 self.boolean1 = False
 self.boolean2 = False
 self.radio = 0
 self.integer = 0
 self.float = 0.0
 self.string = ''
 self.textview = ''

 # start variables incrementer
 increment = self.incrementer()
 self.timer_function = increment.next
 self.root.after(int(INCREMENTER_PERIOD * 1000.0),self.timer_wrap)

 def timer_wrap(self):
 "Call given function, reschedule it after return"
 self.timer_function()
 self.root.after(int(INCREMENTER_PERIOD * 1000.0),self.timer_wrap)

 def incrementer(self):
 """
 Booleans are toggled, radio button index is rotated from first to last,
 integer is incremented by 1, float by 0.5, string is appended a char
 until maxlen when string is cleared, text view/edit is appended a line
 of text until maxlen when it is cleared.
 Return True to keep timer alive.
 """
 while True:
 self.boolean1 = not self.boolean1
 yield True

 self.boolean2 = not self.boolean2
 yield True

 if self.radio == 2:
 self.radio = 0
 else:
 self.radio += 1
 yield True

 self.integer += 1
 yield True

 self.float += 0.5
 yield True

 if len(self.string) >= 20:

Fabrizio Pollastri 61/80

AVC, Application View Controller User Manual

 self.string = 'A'
 else:
 self.string += 'A'
 yield True

 if len(self.textview) >= 200:
 self.textview = ''
 else:
 self.textview += 'line of text, line of text, line of text\n'
 yield True

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
Tkinter.mainloop() # run Tk event loop until quit

END

The GUI layout was previously edited with Visual Tcl and saved to the file ‘tk_showcase.tcl’.

The key points of the example regarding AVC are the following.

● During Visual Tcl editing, the following names were given to the widgets.
Row widget name

1
button boolean1__button

output value label boolean1__var

2
checkbutton boolean2__checkbutton

output value label boolean2__var

3

radiobutton0 radio__radiobutton0

radiobutton1 radio__radiobutton1

radiobutton2 radio__radiobutton2

output value label radio__var

4

spinbutton integer__spinbox

entry integer__entry

slider integer__hscale

output value label integer__var

5

spinbutton float__spinbox

entry float__entry

slider float__hscale

output value label float__var

6
entry string__entry

output value label string__var

7
textview textview__textview

output value label textview__var

● The AVC package is imported at program begin (from avc import *).
● The application class is derived from the AVC class (class Example(AVC):).

● The following variables are declared in the application.

 self.boolean1 = False

Fabrizio Pollastri 62/80

AVC, Application View Controller User Manual

 self.boolean2 = False
 self.radio = 0
 self.integer = 0
 self.float = 0.0
 self.string = ''
 self.textview = ''
 self.status = ''

● The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections of all widegts/variable combinations and
to initialize the widgets values with the initial value of the connected variable .

Example files in directory 'examples' of distribution: program 'tk_showcase.py', graphic
interface descriptor as tcl script 'tk_showcase.tcl'.

 11.5 Countdown example

This example continuously creates at random intervals windows displaying a counter. Each
counter starts from 10 and is independently decremented. When the count reaches zero, the
counter window is destroyed. Also a main window with a “close all windows” button is
displayed.

 11.5.1 Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

from Tkinter import * # Tk interface

from avc import * # AVC for Tk

from random import randint # random integer generator

TOPLEVEL_NAME = 'countdown' # name of the top level widget
COUNTDOWN_PERIOD = 500 # count down at 2 unit per second
MAX_CREATION_PERIOD = 4000 # create a new count down at 1/2 this

class Countdown(AVC):
 """
 A countdown counter displayed in a Label widget. Count starts at given
 value. When count reaches zero the counter and its GUI are destroyed.
 """

Fabrizio Pollastri 63/80

AVC, Application View Controller User Manual

 def __init__(self,count_start=10):

 ## create GUI

 # main window
 self.root = Tk()
 self.root.title('AVC Tk countdown example')
 self.frame = Frame(self.root,name='countdown',width=350,height=50)
 self.frame.pack(expand=1)

 # count down label
 self.label = Label(self.frame,name='counter')
 self.label.place(relx=0.5,rely=0.4,anchor=CENTER)

 # terminate program at toplevel window destroy: connect toplevel
 # destroy signal to termination handler.
 self.root.bind_class('Toplevel','<Destroy>',lambda event: self.root.quit())

 # init the counter variable
 self.counter = count_start

 # connect counter variable with label widget
 self.avc_connect(self.root)

 # start count down
 self.root.after(COUNTDOWN_PERIOD,self.decrementer)

 def decrementer(self):
 "Counter decrementer. Return False to destroy previous timer."
 self.counter -= 1
 if self.counter:
 # if counter not zero: reschedule count timer
 self.root.after(COUNTDOWN_PERIOD,self.decrementer)
 else:
 # counter reached zero: destroy this countdown and its GUI
 self.root.destroy()

class Example(AVC):
 """
 Continuously create at random intervals windows with a countdown from 10 to 0.
 When a countdown reaches zero, its window is destroyed. Also create a main
 window with a "close all" button.
 """

 def __init__(self):

 ## create GUI

 # main window
 self.root = Tk()
 self.root.title('AVC Tk countdown example')
 self.frame = Frame(self.root,name='countdown',width=350,height=50)
 self.frame.pack(expand=1)

 # close all button
 self.button = Button(self.frame,name='close_all',text='CLOSE ALL WINDOWS')
 self.button.place(relx=0.5,rely=0.5,anchor=CENTER)

 # terminate program at toplevel window destroy: connect toplevel

Fabrizio Pollastri 64/80

AVC, Application View Controller User Manual

 # destroy signal to termination handler.
 self.root.bind_class('Toplevel','<Destroy>',lambda event: self.root.quit())

 # create the first countdown
 self.new_countdown()

 # close all button connected variable
 self.close_all = False

 def new_countdown(self,count_start=10):
 "Create a new countdown"

 # create a new countdown
 Countdown(count_start)

 # autocall after a random delay
 self.root.after(randint(1,MAX_CREATION_PERIOD),self.new_countdown)

 def close_all_changed(self,value):
 "Terminate program at 'close all' button pressing"
 self.root.quit()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
mainloop() # run Tk event loop until quit

END

The key points of the example regarding AVC are the following.

● In the main window, the name 'close_all' was given to the button widget; in the counter
window, the name 'counter' was given to the label widget.

● The AVC package is imported at program begin (from avc import *).

● Both the application class and the counter class are derived from the AVC class (class
Example(AVC): | class Countdown(AVC):).

● A boolean variable with an initial value of False and name 'close_all' is declared in the
application (self.close_all = False).

● The method 'close_all_changed' is defined in the application to handle the press event
of the 'close all windows' button.

● The avc_init method is called after the instantiation of the application class
(example.avc_init()) to init AVC logic and to realize the connection of the 'close all
windows' button to the 'close_all' variable.

● A integer variable with an initial default value of 10 and name 'counter' is declared in
the Countdown class (self.counter = count_start)

● The avc_connect method is called at the instantation of the Countdown class
(self.avc_connect(self.root)) with argument the window widget of the counter. This
call realizes the connection of the label widget to the 'counter' variable.

Example files in directory 'examples' of distribution: program 'tk_countdown_progui.py'.

Fabrizio Pollastri 65/80

AVC, Application View Controller User Manual

 12 wxWidgets examples

 12.1 Spin control example
For a functional description of the graphic interface see the GTK+ “Spin button example“ at
page 19.

12.1.1 Python source

#!/usr/bin/python
.copyright : (c) 2007 Fabrizio Pollastri
.license : GNU General Public License v3

import wx # wx tool kit bindings
from wx import xrc # xml resource support

from avc import * # AVC

WXGLADE_XML = 'wx_spinctrl.xrc' # GUI wxGlade descriptor

class Example(wx.PySimpleApp,AVC):
 """
 A spin button whose value is replicated into a static text
 """

 def __init__(self):

 ## create GUI

 # init wx application base class
 wx.PySimpleApp.__init__(self)

 # create GUI
 xml_resource = xrc.XmlResource(WXGLADE_XML)
 self.root = xml_resource.LoadFrame(None,'frame_1')
 self.root.Show()

 ## the variable holding the spin button value
 self.spin_value = 0

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.MainLoop() # run wx event loop until quit

END

Fabrizio Pollastri 66/80

AVC, Application View Controller User Manual

The GUI layout was previously edited with wxGlade and saved to the file ‘wx_spinctrl.xrc’.

The key points of the example regarding AVC are the following.

● During wxGlade editing, the same name 'spin_value' was given to the spin button and
to the label.

● The AVC package is imported at program begin (from avc import *).
● The application class is derived from the class PySimpleApp of wxWidgets and from

the class AVC of AVC (class Example(wx.PySimpleApp,AVC):).

● A integer variable with an initial value of 0 and name 'spin_value' is declared in the
application (self.spin_value = 0).

● The avc_init method is called after the instantation of the application class, to realize
the connections of the two widgets through the 'spin_value' variable and to initialize
the widgets values with the initial value of the variable (example.avc_init()).

Example files in directory 'examples' of distribution: program 'wx_spinctrl.py' , UI descriptor
'wx_spinctrl.xrc'.

 12.2 Counter example
For a functional description of the graphical interface see the GTK+ “Counter example“ at
page 20.

 12.2.1 Python source

#!/usr/bin/python
.copyright : (c) 2007 Fabrizio Pollastri
.license : GNU General Public License v3

import wx # wx tool kit bindings
from wx import xrc # xml resource support

from avc import * # AVC

WXGLADE_XML = 'wx_counter.xrc' # GUI wxGlade descriptor
LOW_SPEED = 0.5 #--
HIGH_SPEED = 0.1 #- low and high speed period (ms)

class ExampleGUI(wx.PySimpleApp):
 "Counter GUI creation"

 def __init__(self):

 # init wx application base class
 wx.PySimpleApp.__init__(self)

 # create GUI
 xml_resource = xrc.XmlResource(WXGLADE_XML)

Fabrizio Pollastri 67/80

AVC, Application View Controller User Manual

 self.root = xml_resource.LoadFrame(None,'frame_1')
 self.root.Show()

 # timer
 self.timer1 = None

 def timer(self,period,function):
 "Start a wx timer calling back 'function' every 'period' seconds."
 if not self.timer1:
 self.timer1 = wx.Timer(self.root,wx.NewId())
 self.root.Bind(wx.EVT_TIMER,function,self.timer1)
 self.timer1.Start(period * 1000,oneShot=True)

class ExampleMain(AVC):
 """
 A counter displayed in a Label widget whose count speed can be
 accelerated by checking a check button.
 """

 def __init__(self,gui):

 # save gui
 self.gui = gui

 # the counter variable and its speed status
 self.counter = 0
 self.high_speed = False

 # start incrementer timer
 self.gui.timer(LOW_SPEED,self.incrementer)

 def incrementer(self,event):
 """
 Counter incrementer: increment period = LOW_SPEED, if high speed is False,
 increment period = HIGH_SPEED otherwise. Return False to destroy previous
 timer.
 """
 self.counter += 1
 if self.high_speed:
 period = HIGH_SPEED
 else:
 period = LOW_SPEED
 self.gui.timer(period,self.incrementer)

 def high_speed_changed(self,value):
 "Notify change of counting speed to terminal"
 if value:
 print 'counting speed changed to high'
 else:
 print 'counting speed changed to low'

MAIN

example_gui = ExampleGUI() # create the application GUI
example = ExampleMain(example_gui) # instantiate the application
example.avc_init() # connect widgets with variables
example_gui.MainLoop() # run wx event loop until quit

Fabrizio Pollastri 68/80

AVC, Application View Controller User Manual

END

The GUI layout was previously edited with wxGlade and saved to the file ‘wx_counter.xrc’.

The key points of the example regarding AVC are the following.

● During wxGlade editing, the name 'counter' was given to the static text and the name
'high_speed' was given to the check box.

● The AVC package is imported at program begin (from avc import *).
● The application class is derived from the class PySimpleApp fo wxWidgets and from

the class AVC of AVC (class Example(wx.PySimpleApp,AVC):).
● A integer variable with an initial value of 0 and name 'counter' is declared in the

application to hold the counter value (self.counter = 0).
● A boolean variable with an initial value of False and name 'high_speed' is declared in

the application to hold the speed status of the counter increment speed
(self.high_speed = False).

● The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections between the 'counter' variable and the
label widget and between the the 'high_speed' variable and the check button, the label
widget is initialized with the initial value of the 'counter' variable.

Example files in directory 'examples' of distribution: program 'wx_counter.py' , UI descriptor
'wx_counter.xrc'.

 12.3 Label example
This example shows the formatting capabilities of the label widget. For each supported type of
the connected variable, a formatting string is defined and a sample value of the connected
variable is displayed into two label widgets: one with formatting and the other with the
standard python string representation.

 12.3.1 Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri

Fabrizio Pollastri 69/80

AVC, Application View Controller User Manual

.license : GNU General Public License v3

import wx # wx tool kit bindings
from wx import xrc # xml resource support

from avc import * # AVC

WXGLADE_XML = 'wx_label.xrc' # GUI wxGlade descriptor

class Example(wx.PySimpleApp,AVC):
 """
 Showcase of formatting capabilities for the label widget
 """

 def __init__(self):

 # init wx application base class
 wx.PySimpleApp.__init__(self)

 # create GUI
 xml_resource = xrc.XmlResource(WXGLADE_XML)
 self.root = xml_resource.LoadFrame(None,'frame_1')
 self.root.Show()

 # all types of connected variables
 self.bool_value = True
 self.float_value = 1.0
 self.int_value = 1
 self.list_value = [1,2,3]
 self.str_value = 'abc'
 self.tuple_value = (1,2,3)
 class Obj:
 "A generic object with 2 attributes x,y"
 def __init__(self):
 self.x = 1
 self.y = 2
 self.obj_value = Obj()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.MainLoop() # run wx event loop until quit

END

The GUI layout was previously edited with wxGlade and saved to the file ‘wx_label.xrc’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

● For each control type (for each row) the two label widgets, one in the
column “Label with format” and one in the column “Label without
format”, are connected to the variable of the corresponding type. For
example, in row “boolean”, both label widgets are called “bool_value”, so
they connect to the variable self.bool_value .

● When the wxWidget event loop is entered both columns are set to

Fabrizio Pollastri 70/80

AVC, Application View Controller User Manual

display the initial values of the connected variables. For example, in row
“integer”, both labels are set to display the integer value 1.

● The differences of representation between the column “Label with
format” and the column “Label without format” reflect the different
printout results coming from the formatting capabilities of the label
widget and from str, the generic textual rendering function of python.

Example files in directory 'examples' of distribution: program 'wx_label.py', UI descriptor
'wx_label.xrc'.

 12.4 Showcase example

This example shows a table of all widget/variable type combinations supported by AVC. The
program creates a window with three columns: the first shows the type of the connected
variable, the second shows all the widgets that can be connected to that type of variable, the
third shows the current value of each variable. Each row of the window represent a
widgets/variable combination as follows.

● Row 1: memoryless button and bitmap button with boolean variable, pressed = True,
unpressed = False.

● Row 2: buttons with memory, toggle and check box, pressed = True, unpressed = False.

● Row 3: mutually exclusive choices widgets, radio box buttons numbered from 0 to 2, a
choice with 3 items and a combo box with 3 items, index variable = number of checked
radio button and selected item of combo box.

● Row 4: integer input/output widgets, spin control, text control and slider.

● Row 5: float input/output widget, text control.

● Row 6: string input/output widget, text control.

● Row 7: string input/output widget, text control view/edit.

● Row 8: status messages, status bar.

Fabrizio Pollastri 71/80

AVC, Application View Controller User Manual

The text label widget is used in all output modes for the column of the connected variable
values. The program increment the value of each connected variable looping top-bottom at
three rows per seconds. The user can also change the values in the connected variables
interacting with the widgets.

 12.4.1 Python source

#!/usr/bin/python
.copyright : (c) 2007 Fabrizio Pollastri
.license : GNU General Public License v3

import wx # wx tool kit bindings
from wx import xrc # xml resource support

from avc import * # AVC

WXGLADE_XML = 'wx_showcase.xrc' # GUI wxGlade descriptor
INCREMENTER_PERIOD = 333 # ms

class Example(wx.PySimpleApp,AVC):
 "A table of all supported widget/control type combinations"

 def __init__(self):

 # init wx application base class
 wx.PySimpleApp.__init__(self)

 # create GUI
 xml_resource = xrc.XmlResource(WXGLADE_XML)
 self.root = xml_resource.LoadFrame(None,'frame_1')
 self.root.Show()

 # the control variables
 self.boolean1 = False
 self.boolean2 = False
 self.index = 0
 self.integer = 0
 self.float = 0.0
 self.string = ''
 self.textview = ''
 self.status = ''

 # start counter incrementer at low speed
 self.timer = wx.Timer(self.root,wx.NewId())
 self.root.Bind(wx.EVT_TIMER,self.incrementer_wrap,self.timer)
 self.timer.Start(int(INCREMENTER_PERIOD),oneShot=False)
 self.increment = self.incrementer()

 def incrementer_wrap(self,event):
 "Discard event argument and call the real incrementer iterator"
 self.increment.next()

 def incrementer(self,*args):
 """
 Booleans are toggled, radio button index is rotated from first to last,
 integer is incremented by 1, float by 0.5, string is appended a char
 until maxlen when string is cleared, text view/edit is appended a line

Fabrizio Pollastri 72/80

AVC, Application View Controller User Manual

 of text until maxlen when it is cleared. Status bar message is toggled.
 Return True to keep timer alive.
 """
 while True:

 self.boolean1 = not self.boolean1
 yield True

 self.boolean2 = not self.boolean2
 yield True

 if self.index >= 2:
 self.index = 0
 else:
 self.index += 1
 yield True

 self.integer += 1
 yield True

 self.float += 0.5
 yield True

 if len(self.string) >= 10:
 self.string = ''
 else:
 self.string += 'A'
 yield True

 if len(self.textview) >= 200:
 self.textview = ''
 else:
 self.textview += 'line of text, line of text, line of text\n'
 yield True

 if not self.status:
 self.status = 'status message'
 else:
 self.status = ''
 yield True

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.MainLoop() # run wx event loop until quit

END

The GUI layout was previously edited with wxGlade and saved to the file ‘wx_showcase.xrc’.

The key points of the example regarding AVC are the following.

● During Glade editing, the following names were given to the widgets.

Row widget name

1
button boolean1__button
bitmap button boolean1__bitmapbutton
output value label boolean1__var

2 togglebutton boolean2__togglebutton

Fabrizio Pollastri 73/80

AVC, Application View Controller User Manual

checkbox boolean2__checkbox
output value label boolean2__var

3

radiobox index__radiobox
choice index__choice
combobox index__combobox
output value label index__var

4

spinctrl integer__spinctrl
textctrl integer__textctrl
slider integer__slider
output value label integer__var

5 textctrl float__entry
output value label float__var

6 textctrl string__textctrl
output value label string__var

7 textctrl textview__textctrl
output value label textview__var

8 statusbar status__statusbar
output value label status__var

● The AVC package is imported at program begin (from avc import *).
● The application class is derived from the class PySimpleApp of wxWidgets and from

the class AVC of AVC (class Example(wx.PySimpleApp,AVC):).

● The following variables are declared in the application.

 self.boolean1 = False
 self.boolean2 = False
 self.index = 0
 self.integer = 0
 self.float = 0.0
 self.string = ''
 self.textview = ''
 self.status = ''

● The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections of all widegts/variable combinations and
to initialize the widgets values with the initial value of the connected variable .

Example files in directory 'examples' of distribution: program 'wx_showcase.py' , UI descriptor
'wx_showcase.xrc'.

 12.5 Countdown example

This example continuously creates at random intervals windows displaying a counter. Each
counter starts from 10 and is independently decremented. When the count reaches zero, the

Fabrizio Pollastri 74/80

AVC, Application View Controller User Manual

counter window is destroyed. Also a main window with a “close all windows” button is
displayed.

 12.5.1 Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

import wx # wx tool kit bindings
from wx import xrc # xml resource support

from avc import * # AVC

from random import randint # random integer generator

WXGLADE_MAIN = 'wx_countdown_main.xrc' # main window glade descriptor
WXGLADE_CD = 'wx_countdown.xrc' # count down window glade descriptor
COUNTDOWN_PERIOD = 500 # count down at 2 unit per second
MAX_CREATION_PERIOD = 4000 # create a new count down at 1/2 this

class Countdown(AVC):
 """
 A countdown counter displayed in a Label widget. Count starts at given
 value. When count reaches zero the counter and its GUI are destroyed.
 """

 def __init__(self,count_start=10):

 # create GUI
 xml_resource = xrc.XmlResource(WXGLADE_CD)
 self.root = xml_resource.LoadFrame(None,'frame_1')
 self.root.Show()

 # init the counter variable
 self.counter = count_start

 # connect counter variable with label widget
 self.avc_connect(self.root)

 # start count down
 self.timer = wx.Timer(self.root,wx.NewId())
 self.root.Bind(wx.EVT_TIMER,self.decrementer,self.timer)
 self.timer.Start(COUNTDOWN_PERIOD)

 def decrementer(self,event):
 "Counter decrementer. Return False to destroy previous timer."
 self.counter -= 1
 if not self.counter:
 # counter reached zero: destroy this countdown and its GUI
 self.root.Close()

class Example(wx.PySimpleApp,AVC):
 """
 Continuously create at random intervals windows with a countdown from 10 to 0.
 When a countdown reaches zero, its window is destroyed. Also create a main
 window with a "close all" button.

Fabrizio Pollastri 75/80

AVC, Application View Controller User Manual

 """

 def __init__(self):

 # init wx application base class
 wx.PySimpleApp.__init__(self)

 # create GUI
 xml_resource = xrc.XmlResource(WXGLADE_MAIN)
 self.root = xml_resource.LoadFrame(None,'frame_1')
 self.root.Show()

 # terminate application at main window close
 self.root.Bind(wx.EVT_CLOSE,self.on_destroy)

 # close all button connected variable
 self.close_all = False

 # create count down creation timer
 self.timer = wx.Timer(self.root,wx.NewId())
 self.root.Bind(wx.EVT_TIMER,self.new_countdown,self.timer)

 # create the first countdown
 self.new_countdown(None)

 def new_countdown(self,event,count_start=10):
 "Create a new countdown"

 # create a new countdown
 Countdown(count_start)

 # autocall after a random delay
 self.timer.Start(randint(1,MAX_CREATION_PERIOD),oneShot=True)

 def on_destroy(self,window):
 "Terminate program at window destroy"
 self.Exit()

 def close_all_changed(self,value):
 "Terminate program at 'close all' button pressing"
 self.Exit()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.MainLoop() # run wx event loop until quit

END

The GUI layout was previously edited with wxGlade and saved to the file
‘wx_countdown_main.xrc’ for the main window and to the file 'wx_countdown.xrc' for the
counter windows.

The key points of the example regarding AVC are the following.

● During wxGlade editing of the main window, the name 'close_all' was given to the
button widget; during wxGlade editing of the counter window, the name 'counter' was

Fabrizio Pollastri 76/80

AVC, Application View Controller User Manual

given to the label widget.

● The AVC package is imported at program begin (from avc import *).
● Both the application class and the counter class are derived from the AVC class (class

Example(PySimpleApp,AVC): | class Countdown(AVC):).
● A boolean variable with an initial value of False and name 'close_all' is declared in the

application (self.close_all = False).
● The method 'close_all_changed' is defined in the application to handle the press event

of the 'close all windows' button.
● The avc_init method is called after the instantiation of the application class

(example.avc_init()) to init AVC logic and to realize the connection of the 'close all
windows' button to the 'close_all' variable.

● A integer variable with an initial default value of 10 and name 'counter' is declared in
the Countdown class (self.counter = count_start)

● The avc_connect method is called at the instantation of the Countdown class
(self.avc_connect(self.root)) with argument the window widget of the counter. This
call realizes the connection of the label widget to the 'counter' variable.

Example files in directory 'examples' of distribution: program 'wx_countdown.py' , wxGlade
descriptors 'wx_countdown_main.xrc' anc 'wx_countdown.xrc'.

Fabrizio Pollastri 77/80

AVC, Application View Controller User Manual

 13 References
[1] Python, http://www.python.org/

[2] GTK+, http://www.gtk.org/

[3] Qt3, http://trolltech.com/products/qt/qt3/

[4] Qt4, http://trolltech.com/products/qt/

[5] Tk, http://www.tcl.tk/

[6] wxWidgets, http://www.wxwidgets.org/

[7] Pygtk, http://www.pygtk.org/

[8] PyQt v3 and v4, http://www.riverbankcomputing.co.uk/pyqt/

[9] Tkinter, http://effbot.org/tkinterbook/

[10] wxPython, http://www.wxpython.org/

[11] Glade, http://glade.gnome.org/

[12] Qt designer, http://trolltech.com/products/qt/features/designer/

[13] Visual Tcl, http://vtcl.sourceforge.net/

[14] wxGlade, http://www.wxglade.org/

[15] GNU General Public License, http://www.gnu.org/licenses/gpl.html/

[16] GNU Free Documentation License, http://www.gnu.org/copyleft/fdl.html

Fabrizio Pollastri 78/80

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/licenses/gpl.html
http://vtcl.sourceforge.net/
http://trolltech.com/products/qt/features/designer
http://glade.gnome.org/
http://effbot.org/tkinterbook/
http://www.riverbankcomputing.co.uk/pyqt/
http://www.pygtk.org/
http://www.tcl.tk/
http://trolltech.com/products/qt
http://trolltech.com/products/qt/qt3
http://www.gtk.org/
http://www.python.org/

AVC, Application View Controller User Manual

GNU Free Documentation License
Version 1.2, November 2002

 Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or
reference.
1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.
A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.
A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.
The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.
The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is
suitable for revising the document traightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not
"Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.
The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of
the work's title, preceding the beginning of the body of the text.
A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ"
according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are
considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.
2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.
4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were
any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives
permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

Fabrizio Pollastri 79/80

AVC, Application View Controller User Manual

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in
the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of
the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other section titles.
You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example,
statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of
any Modified Version.
5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise
combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".
6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the
individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the
Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.
8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.
9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later
version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published
(not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

END

Fabrizio Pollastri 80/80

	 1 Introduction
	 1.1 What is
	 1.2 Features
	 1.3 Quick start
	 1.4 Installation

	 2 Common reference
	 2.1 Supported widgets
	 2.2 Widgets-variables names matching
	 2.3 Matching namespaces
	 2.4 Connected objects
	 2.5 Static and dynamic connections
	 2.6 Uniform separation between application logic and GUI
	 2.7 AVC initialization
	 2.8 Connecting widgets with variables
	 2.9 Abstract widget collection
	Button
	Check button
	Combo box
	Entry
	Label
	Radio button
	Slider
	Spin button
	Status bar
	Text view/edit
	Toggle button

	 2.10 Testing and debugging
	 2.10.1 Testing printout for example gtk_counter.py

	 3 GTK+ Reference
	 3.1 Module dependencies
	 3.2 Widget naming
	 3.3 Status bar widget
	 3.4 Interface designer

	 4 Qt3 Reference
	 4.1 Module dependencies
	 4.2 Widget naming
	 4.3 Application GUI class
	 4.4 Interface designer

	 5 Qt4 reference
	 5.1 Module dependencies
	 5.2 Widget naming
	 5.3 Application GUI class
	 5.4 Interface designer

	 6 Tk reference
	 6.1 Module dependencies
	 6.2 Widget naming
	 6.3 Interface designer

	 7 wxWidgets reference
	 7.1 Module dependencies
	 7.2 Widget naming
	 7.3 Application GUI class
	 7.4 Interface designer

	 8 GTK+ examples
	 8.1 Spin button example
	 8.1.1 Python source

	 8.2 Counter example
	 8.2.1 Python source

	 8.3 Label example
	 8.3.1 Python source

	 8.4 Showcase example
	 8.4.1 Python source

	 8.5 Countdown example
	 8.5.1 Python source

	 9 Qt3 examples
	 9.1 Spin box example
	 9.1.1 Python source

	 9.2 Counter example
	 9.2.1 Python source

	 9.3 Label example
	 9.3.1 Python source

	 9.4 Showcase example
	 9.4.1 Python source

	 9.5 Countdown example
	 9.5.1 Python source

	 10 Qt4 examples
	 10.1 Spin box example
	 10.1.1 Python source

	 10.2 Counter example
	 10.2.1 Python source

	 10.3 Label example
	 10.3.1 Python source

	 10.4 Showcase example
	 10.4.1 Python source

	 10.5 Countdown example
	 10.5.1 Python source

	 11 Tk examples
	 11.1 Spin box example
	 11.1.1 Python source

	 11.2 Counter example
	 11.2.1 Python source

	 11.3 Label example
	 11.3.1 Python source

	 11.4 Showcase example
	 11.4.1 Python source

	 11.5 Countdown example
	 11.5.1 Python source

	 12 wxWidgets examples
	 12.1 Spin control example
	 12.1.1 Python source

	 12.2 Counter example
	 12.2.1 Python source

	 12.3 Label example
	 12.3.1 Python source

	 12.4 Showcase example
	 12.4.1 Python source

	 12.5 Countdown example
	 12.5.1 Python source

	 13 References

