File: _index.md

package info (click to toggle)
python-avro 1.11.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,724 kB
  • sloc: python: 7,196; xml: 4,238; sh: 784; java: 386; makefile: 74
file content (396 lines) | stat: -rw-r--r-- 19,078 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
---
title: "MapReduce guide"
linkTitle: "MapReduce guide"
weight: 200
---

<!--

 Licensed to the Apache Software Foundation (ASF) under one
 or more contributor license agreements.  See the NOTICE file
 distributed with this work for additional information
 regarding copyright ownership.  The ASF licenses this file
 to you under the Apache License, Version 2.0 (the
 "License"); you may not use this file except in compliance
 with the License.  You may obtain a copy of the License at

   https://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing,
 software distributed under the License is distributed on an
 "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 KIND, either express or implied.  See the License for the
 specific language governing permissions and limitations
 under the License.

-->

Avro provides a convenient way to represent complex data structures within a Hadoop MapReduce job. Avro data can be used as both input to and output from a MapReduce job, as well as the intermediate format. The example in this guide uses Avro data for all three, but it's possible to mix and match; for instance, MapReduce can be used to aggregate a particular field in an Avro record.

This guide assumes basic familiarity with both Hadoop MapReduce and Avro. See the [Hadoop documentation](https://hadoop.apache.org/docs/current/) and the [Avro getting started guide](./getting-started-java/) for introductions to these projects. This guide uses the old MapReduce API (`org.apache.hadoop.mapred`) and the new MapReduce API (`org.apache.hadoop.mapreduce`).

## Setup
The code from this guide is included in the Avro docs under examples/mr-example. The example is set up as a Maven project that includes the necessary Avro and MapReduce dependencies and the Avro Maven plugin for code generation, so no external jars are needed to run the example. In particular, the POM includes the following dependencies:
```xml
<dependency>
  <groupId>org.apache.avro</groupId>
  <artifactId>avro</artifactId>
  <version>{{< avro_version >}}</version>
</dependency>
<dependency>
  <groupId>org.apache.avro</groupId>
  <artifactId>avro-mapred</artifactId>
  <version>{{< avro_version >}}</version>
</dependency>
<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>3.1.2</version>
</dependency>
```
And the following plugin:
```xml
<plugin>
  <groupId>org.apache.avro</groupId>
  <artifactId>avro-maven-plugin</artifactId>
  <version>{{< avro_version >}}</version>
  <executions>
    <execution>
      <phase>generate-sources</phase>
      <goals>
        <goal>schema</goal>
      </goals>
      <configuration>
        <sourceDirectory>${project.basedir}/../</sourceDirectory>
        <outputDirectory>${project.basedir}/target/generated-sources/</outputDirectory>
      </configuration>
    </execution>
  </executions>
</plugin>
```

If you do not configure the *sourceDirectory* and *outputDirectory* properties, the defaults will be used. The *sourceDirectory* property defaults to *src/main/avro*. The *outputDirectory* property defaults to *target/generated-sources*. You can change the paths to match your project layout.

Alternatively, Avro jars can be downloaded directly from the Apache Avro™ Releases [page](https://avro.apache.org/releases.html). The relevant Avro jars for this guide are *avro-{{< avro_version >}}.jar* and *avro-mapred-{{< avro_version >}}.jar*, as well as *avro-tools-{{< avro_version >}}.jar* for code generation and viewing Avro data files as JSON. In addition, you will need to install Hadoop in order to use MapReduce.

## Example: ColorCount
Below is a simple example of a MapReduce that uses Avro. There is an example for both the old (org.apache.hadoop.mapred) and new (org.apache.hadoop.mapreduce) APIs under *examples/mr-example/src/main/java/example/*. _MapredColorCount_ is the example for the older mapred API while _MapReduceColorCount_ is the example for the newer mapreduce API. Both examples are below, but we will detail the mapred API in our subsequent examples.

MapredColorCount.java:
```java
package example;

import java.io.IOException;

import org.apache.avro.*;
import org.apache.avro.Schema.Type;
import org.apache.avro.mapred.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;

import example.avro.User;

public class MapredColorCount extends Configured implements Tool {

  public static class ColorCountMapper extends AvroMapper<User, Pair<CharSequence, Integer>> {
    @Override
    public void map(User user, AvroCollector<Pair<CharSequence, Integer>> collector, Reporter reporter)
        throws IOException {
      CharSequence color = user.getFavoriteColor();
      // We need this check because the User.favorite_color field has type ["string", "null"]
      if (color == null) {
        color = "none";
      }
      collector.collect(new Pair<CharSequence, Integer>(color, 1));
    }
  }

  public static class ColorCountReducer extends AvroReducer<CharSequence, Integer,
                                                            Pair<CharSequence, Integer>> {
    @Override
    public void reduce(CharSequence key, Iterable<Integer> values,
                       AvroCollector<Pair<CharSequence, Integer>> collector,
                       Reporter reporter)
        throws IOException {
      int sum = 0;
      for (Integer value : values) {
        sum += value;
      }
      collector.collect(new Pair<CharSequence, Integer>(key, sum));
    }
  }

  public int run(String[] args) throws Exception {
    if (args.length != 2) {
      System.err.println("Usage: MapredColorCount <input path> <output path>");
      return -1;
    }

    JobConf conf = new JobConf(getConf(), MapredColorCount.class);
    conf.setJobName("colorcount");

    FileInputFormat.setInputPaths(conf, new Path(args[0]));
    FileOutputFormat.setOutputPath(conf, new Path(args[1]));

    AvroJob.setMapperClass(conf, ColorCountMapper.class);
    AvroJob.setReducerClass(conf, ColorCountReducer.class);

    // Note that AvroJob.setInputSchema and AvroJob.setOutputSchema set
    // relevant config options such as input/output format, map output
    // classes, and output key class.
    AvroJob.setInputSchema(conf, User.getClassSchema());
    AvroJob.setOutputSchema(conf, Pair.getPairSchema(Schema.create(Type.STRING),
        Schema.create(Type.INT)));

    JobClient.runJob(conf);
    return 0;
  }

  public static void main(String[] args) throws Exception {
    int res = ToolRunner.run(new Configuration(), new MapredColorCount(), args);
    System.exit(res);
  }
}
```

MapReduceColorCount.java:
```java
package example;

import java.io.IOException;

import org.apache.avro.Schema;
import org.apache.avro.mapred.AvroKey;
import org.apache.avro.mapred.AvroValue;
import org.apache.avro.mapreduce.AvroJob;
import org.apache.avro.mapreduce.AvroKeyInputFormat;
import org.apache.avro.mapreduce.AvroKeyValueOutputFormat;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import example.avro.User;

public class MapReduceColorCount extends Configured implements Tool {

  public static class ColorCountMapper extends
      Mapper<AvroKey<User>, NullWritable, Text, IntWritable> {

    @Override
    public void map(AvroKey<User> key, NullWritable value, Context context)
        throws IOException, InterruptedException {

      CharSequence color = key.datum().getFavoriteColor();
      if (color == null) {
        color = "none";
      }
      context.write(new Text(color.toString()), new IntWritable(1));
    }
  }

  public static class ColorCountReducer extends
      Reducer<Text, IntWritable, AvroKey<CharSequence>, AvroValue<Integer>> {

    @Override
    public void reduce(Text key, Iterable<IntWritable> values,
        Context context) throws IOException, InterruptedException {

      int sum = 0;
      for (IntWritable value : values) {
        sum += value.get();
      }
      context.write(new AvroKey<CharSequence>(key.toString()), new AvroValue<Integer>(sum));
    }
  }

  public int run(String[] args) throws Exception {
    if (args.length != 2) {
      System.err.println("Usage: MapReduceColorCount <input path> <output path>");
      return -1;
    }

    Job job = new Job(getConf());
    job.setJarByClass(MapReduceColorCount.class);
    job.setJobName("Color Count");

    FileInputFormat.setInputPaths(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));

    job.setInputFormatClass(AvroKeyInputFormat.class);
    job.setMapperClass(ColorCountMapper.class);
    AvroJob.setInputKeySchema(job, User.getClassSchema());
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);

    job.setOutputFormatClass(AvroKeyValueOutputFormat.class);
    job.setReducerClass(ColorCountReducer.class);
    AvroJob.setOutputKeySchema(job, Schema.create(Schema.Type.STRING));
    AvroJob.setOutputValueSchema(job, Schema.create(Schema.Type.INT));

    return (job.waitForCompletion(true) ? 0 : 1);
  }

  public static void main(String[] args) throws Exception {
    int res = ToolRunner.run(new MapReduceColorCount(), args);
    System.exit(res);
  }
}
```
ColorCount reads in data files containing *User* records, defined in _examples/user.avsc_, and counts the number of instances of each favorite color. (This example draws inspiration from the canonical _WordCount_ MapReduce application.) This example uses the old MapReduce API. See MapReduceAvroWordCount, found under _doc/examples/mr-example/src/main/java/example/_ to see the new MapReduce API example. The User schema is defined as follows:
```json
{"namespace": "example.avro",
 "type": "record",
 "name": "User",
 "fields": [
     {"name": "name", "type": "string"},
     {"name": "favorite_number",  "type": ["int", "null"]},
     {"name": "favorite_color", "type": ["string", "null"]}
 ]
}
```
This schema is compiled into the *User* class used by *ColorCount* via the Avro Maven plugin (see _examples/mr-example/pom.xml_ for how this is set up).

*ColorCountMapper* essentially takes a *User* as input and extracts the User's favorite color, emitting the key-value pair `<favoriteColor, 1>`. _ColorCountReducer_ then adds up how many occurrences of a particular favorite color were emitted, and outputs the result as a Pair record. These Pairs are serialized to an Avro data file.

## Running ColorCount
The _ColorCount_ application is provided as a Maven project in the Avro docs under _examples/mr-example_. To build the project, including the code generation of the User schema, run:
```shell
mvn compile
```
Next, run _GenerateData_ from `examples/mr-examples` to create an Avro data file, `input/users.avro`, containing 20 Users with favorite colors chosen randomly from a list:
```shell
mvn exec:java -q -Dexec.mainClass=example.GenerateData
```
Besides creating the data file, GenerateData prints the JSON representations of the Users generated to stdout, for example:
```json
{"name": "user", "favorite_number": null, "favorite_color": "red"}
{"name": "user", "favorite_number": null, "favorite_color": "green"}
{"name": "user", "favorite_number": null, "favorite_color": "purple"}
{"name": "user", "favorite_number": null, "favorite_color": null}
...
``` 
Now we're ready to run ColorCount. We specify our freshly-generated input folder as the input path and output as our output folder (note that MapReduce will not start a job if the output folder already exists):
```shell
mvn exec:java -q -Dexec.mainClass=example.MapredColorCount -Dexec.args="input output"
```
Once ColorCount completes, checking the contents of the new output directory should yield the following:
```shell
$ ls output/
part-00000.avro  _SUCCESS
```
You can check the contents of the generated Avro file using the avro-tools jar:
```shell
$ java -jar /path/to/avro-tools-{{< avro_version >}}.jar tojson output/part-00000.avro
{"value": 3, "key": "blue"}
{"value": 7, "key": "green"}
{"value": 1, "key": "none"}
{"value": 2, "key": "orange"}
{"value": 3, "key": "purple"}
{"value": 2, "key": "red"}
{"value": 2, "key": "yellow"}
```
Now let's go over the ColorCount example in detail.

## AvroMapper - org.apache.hadoop.mapred API

The easiest way to use Avro data files as input to a MapReduce job is to subclass `AvroMapper`. An `AvroMapper` defines a `map` function that takes an Avro datum as input and outputs a key/value pair represented as a Pair record. In the ColorCount example, ColorCountMapper is an AvroMapper that takes a User as input and outputs a `Pair<CharSequence, Integer>>`, where the CharSequence key is the user's favorite color and the Integer value is 1.
```java
public static class ColorCountMapper extends AvroMapper<User, Pair<CharSequence, Integer>> {
  @Override
  public void map(User user, AvroCollector<Pair<CharSequence, Integer>> collector, Reporter reporter)
      throws IOException {
    CharSequence color = user.getFavoriteColor();
    // We need this check because the User.favorite_color field has type ["string", "null"]
    if (color == null) {
      color = "none";
    }
    collector.collect(new Pair<CharSequence, Integer>(color, 1));
  }
}
```
In order to use our AvroMapper, we must call AvroJob.setMapperClass and AvroJob.setInputSchema.
```java
AvroJob.setMapperClass(conf, ColorCountMapper.class);
AvroJob.setInputSchema(conf, User.getClassSchema());
```
Note that `AvroMapper` does not implement the `Mapper` interface. Under the hood, the specified Avro data files are deserialized into AvroWrappers containing the actual data, which are processed by a Mapper that calls the configured AvroMapper's map function. AvroJob.setInputSchema sets up the relevant configuration parameters needed to make this happen, thus you should not need to call `JobConf.setMapperClass`, `JobConf.setInputFormat`, `JobConf.setMapOutputKeyClass`, `JobConf.setMapOutputValueClass`, or `JobConf.setOutputKeyComparatorClass`.

## Mapper - org.apache.hadoop.mapreduce API
This document will not go into all the differences between the mapred and mapreduce APIs, however will describe the main differences. As you can see, ColorCountMapper is now a subclass of the Hadoop Mapper class and is passed an AvroKey as it's key. Additionally, the AvroJob method calls were slightly changed.
```java
  public static class ColorCountMapper extends
      Mapper<AvroKey<User>, NullWritable, Text, IntWritable> {

    @Override
    public void map(AvroKey<User> key, NullWritable value, Context context)
        throws IOException, InterruptedException {

      CharSequence color = key.datum().getFavoriteColor();
      if (color == null) {
        color = "none";
      }
      context.write(new Text(color.toString()), new IntWritable(1));
    }
  }
```

## AvroReducer - org.apache.hadoop.mapred API
Analogously to AvroMapper, an AvroReducer defines a reducer function that takes the key/value types output by an AvroMapper (or any mapper that outputs Pairs) and outputs a key/value pair represented a Pair record. In the ColorCount example, ColorCountReducer is an AvroReducer that takes the CharSequence key representing a favorite color and the `Iterable<Integer>` representing the counts for that color (they should all be 1 in this example) and adds up the counts.
```java
public static class ColorCountReducer extends AvroReducer<CharSequence, Integer,
                                                          Pair<CharSequence, Integer>> {
  @Override
  public void reduce(CharSequence key, Iterable<Integer> values,
                     AvroCollector<Pair<CharSequence, Integer>> collector,
                     Reporter reporter)
      throws IOException {
    int sum = 0;
    for (Integer value : values) {
      sum += value;
    }
    collector.collect(new Pair<CharSequence, Integer>(key, sum));
  }
}
```
In order to use our AvroReducer, we must call AvroJob.setReducerClass and AvroJob.setOutputSchema.
```java
AvroJob.setReducerClass(conf, ColorCountReducer.class);
AvroJob.setOutputSchema(conf, Pair.getPairSchema(Schema.create(Type.STRING),
                                                 Schema.create(Type.INT)));
```
Note that _AvroReducer_ does not implement the _Reducer_ interface. The intermediate Pairs output by the mapper are split into _AvroKeys_ and _AvroValues_, which are processed by a Reducer that calls the configured AvroReducer's `reduce` function. `AvroJob.setOutputSchema` sets up the relevant configuration parameters needed to make this happen, thus you should not need to call `JobConf.setReducerClass`, `JobConf.setOutputFormat`, `JobConf.setOutputKeyClass`, `JobConf.setMapOutputKeyClass`, `JobConf.setMapOutputValueClass`, or `JobConf.setOutputKeyComparatorClass`.

## Reduce - org.apache.hadoop.mapreduce API
As before we not detail every difference between the APIs. As with the _Mapper_ change _ColorCountReducer_ is now a subclass of _Reducer_ and _AvroKey_ and _AvroValue_ are emitted. Additionally, the _AvroJob_ method calls were slightly changed.
```java
  public static class ColorCountReducer extends
      Reducer<Text, IntWritable, AvroKey<CharSequence>, AvroValue<Integer>> {

    @Override
    public void reduce(Text key, Iterable<IntWritable> values,
        Context context) throws IOException, InterruptedException {

      int sum = 0;
      for (IntWritable value : values) {
        sum += value.get();
      }
      context.write(new AvroKey<CharSequence>(key.toString()), new AvroValue<Integer>(sum));
    }
  }
```

## Learning more
The mapred API allows users to mix Avro AvroMappers and AvroReducers with non-Avro Mappers and Reducers and the mapreduce API allows users input Avro and output non-Avro or vice versa.

The mapred package has API org.apache.avro.mapred documentation as does the `org.apache.avro.mapreduce` package. MapReduce API (`org.apache.hadoop.mapreduce`). Similarily to the mapreduce package, it's possible with the mapred API to implement your own Mappers and Reducers directly using the public classes provided in these libraries. See the `AvroWordCount` application, found under _examples/mr-example/src/main/java/example/AvroWordCount.java_ in the Avro documentation, for an example of implementing a Reducer that outputs Avro data using the old MapReduce API. See the `MapReduceAvroWordCount` application, found under _examples/mr-example/src/main/java/example/MapReduceAvroWordCount.java_ in the Avro documentation, for an example of implementing a Reducer that outputs Avro data using the new MapReduce API.