1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
#!/usr/bin/env python3
##
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
import collections
import io
import logging
import os
import threading
import traceback
from typing import cast
import avro.errors
import avro.io
import avro.ipc
import avro.protocol
import avro.schema
__all__ = ["TetherTask", "TaskType", "inputProtocol", "outputProtocol", "HTTPRequestor"]
# create protocol objects for the input and output protocols
# The build process should copy InputProtocol.avpr and OutputProtocol.avpr
# into the same directory as this module
TaskType = None
pfile = os.path.split(__file__)[0] + os.sep + "InputProtocol.avpr"
with open(pfile) as hf:
prototxt = hf.read()
inputProtocol = avro.protocol.parse(prototxt)
# use a named tuple to represent the tasktype enumeration
assert inputProtocol.types_dict is not None
taskschema = cast(avro.schema.EnumSchema, inputProtocol.types_dict["TaskType"])
# Mypy cannot statically type check a dynamically constructed named tuple.
# Since InputProtocol.avpr is hard-coded here, we can hard-code the symbols.
_ttype = collections.namedtuple("_ttype", ("MAP", "REDUCE"))
TaskType = _ttype(*taskschema.symbols)
pfile = os.path.split(__file__)[0] + os.sep + "OutputProtocol.avpr"
with open(pfile) as hf:
prototxt = hf.read()
outputProtocol = avro.protocol.parse(prototxt)
class Collector:
"""
Collector for map and reduce output values
"""
def __init__(self, scheme, outputClient):
"""
Parameters
---------------------------------------------
scheme - The scheme for the datums to output - can be a json string
- or an instance of Schema
outputClient - The output client used to send messages to the parent
"""
if not isinstance(scheme, avro.schema.Schema):
scheme = avro.schema.parse(scheme)
self.scheme = scheme
self.datum_writer = avro.io.DatumWriter(writers_schema=self.scheme)
self.outputClient = outputClient
def collect(self, record, partition=None):
"""Collect a map or reduce output value
Parameters
------------------------------------------------------
record - The record to write
partition - Indicates the partition for a pre-partitioned map output
- currently not supported
"""
# Replace the encoder and buffer every time we collect.
with io.BytesIO() as buff:
self.encoder = avro.io.BinaryEncoder(buff)
self.datum_writer.write(record, self.encoder)
value = buff.getvalue()
datum = {"datum": value}
if partition is not None:
datum["partition"] = partition
self.outputClient.request("output", datum)
def keys_are_equal(rec1, rec2, fkeys):
"""Check if the "keys" in two records are equal. The key fields
are all fields for which order isn't marked ignore.
Parameters
-------------------------------------------------------------------------
rec1 - The first record
rec2 - The second record
fkeys - A list of the fields to compare
"""
for f in fkeys:
if not (rec1[f] == rec2[f]):
return False
return True
class HTTPRequestor:
"""
This is a small requestor subclass I created for the HTTP protocol.
Since the HTTP protocol isn't persistent, we need to instantiate
a new transciever and new requestor for each request.
But I wanted to use of the requestor to be identical to that for
SocketTransciever so that we can seamlessly switch between the two.
"""
def __init__(self, server, port, protocol):
"""
Instantiate the class.
Parameters
----------------------------------------------------------------------
server - The server hostname
port - Which port to use
protocol - The protocol for the communication
"""
self.server = server
self.port = port
self.protocol = protocol
def request(self, *args, **param):
transciever = avro.ipc.HTTPTransceiver(self.server, self.port)
requestor = avro.ipc.Requestor(self.protocol, transciever)
return requestor.request(*args, **param)
class TetherTask(abc.ABC):
"""
Base class for python tether mapreduce programs.
ToDo: Currently the subclass has to implement both reduce and reduceFlush.
This is not very pythonic. A pythonic way to implement the reducer
would be to pass the reducer a generator (as dumbo does) so that the user
could iterate over the records for the given key.
How would we do this. I think we would need to have two threads, one thread would run
the user's reduce function. This loop would be suspended when no reducer records were available.
The other thread would read in the records for the reducer. This thread should
only buffer so many records at a time (i.e if the buffer is full, self.input shouldn't return right
away but wait for space to free up)
"""
def __init__(self, inschema, midschema, outschema):
"""
Parameters
---------------------------------------------------------
inschema - The scheme for the input to the mapper
midschema - The scheme for the output of the mapper
outschema - The scheme for the output of the reducer
An example scheme for the prototypical word count example would be
inscheme='{"type":"record", "name":"Pair","namespace":"org.apache.avro.mapred","fields":[
{"name":"key","type":"string"},
{"name":"value","type":"long","order":"ignore"}]
}'
Important: The records are split into (key,value) pairs as required by map reduce
by using all fields with "order"=ignore for the key and the remaining fields for the value.
The subclass provides these schemas in order to tell this class which schemas it expects.
The configure request will also provide the schemas that the parent process is using.
This allows us to check whether the schemas match and if not whether we can resolve
the differences (see https://avro.apache.org/docs/current/spec.html#Schema+Resolution))
"""
# make sure we can parse the schemas
# Should we call fail if we can't parse the schemas?
self.inschema = avro.schema.parse(inschema)
self.midschema = avro.schema.parse(midschema)
self.outschema = avro.schema.parse(outschema)
# declare various variables
self.clienTransciever = None
# output client is used to communicate with the parent process
# in particular to transmit the outputs of the mapper and reducer
self.outputClient = None
# collectors for the output of the mapper and reducer
self.midCollector = None
self.outCollector = None
self._partitions = None
# cache a list of the fields used by the reducer as the keys
# we need the fields to decide when we have finished processing all values for
# a given key. We cache the fields to be more efficient
self._red_fkeys = None
# We need to keep track of the previous record fed to the reducer
# b\c we need to be able to determine when we start processing a new group
# in the reducer
self.midRecord = None
# create an event object to signal when
# http server is ready to be shutdown
self.ready_for_shutdown = threading.Event()
self.log = logging.getLogger("TetherTask")
def open(self, inputport, clientPort=None):
"""Open the output client - i.e the connection to the parent process
Parameters
---------------------------------------------------------------
inputport - This is the port that the subprocess is listening on. i.e the
subprocess starts a server listening on this port to accept requests from
the parent process
clientPort - The port on which the server in the parent process is listening
- If this is None we look for the environment variable AVRO_TETHER_OUTPUT_PORT
- This is mainly provided for debugging purposes. In practice
we want to use the environment variable
"""
# Open the connection to the parent process
# The port the parent process is listening on is set in the environment
# variable AVRO_TETHER_OUTPUT_PORT
# open output client, connecting to parent
clientPort = int(clientPort or os.getenv("AVRO_TETHER_OUTPUT_PORT", 0))
if clientPort == 0:
raise avro.errors.UsageError("AVRO_TETHER_OUTPUT_PORT env var is not set")
self.log.info("TetherTask.open: Opening connection to parent server on port=%d", clientPort)
# self.outputClient = avro.ipc.Requestor(outputProtocol, self.clientTransceiver)
# since HTTP is stateless, a new transciever
# is created and closed for each request. We therefore set clientTransciever to None
# We still declare clientTransciever because for other (state) protocols we will need
# it and we want to check when we get the message fail whether the transciever
# needs to be closed.
# self.clientTranciever=None
self.outputClient = HTTPRequestor("127.0.0.1", clientPort, outputProtocol)
try:
self.outputClient.request("configure", {"port": inputport})
except Exception:
estr = traceback.format_exc()
self.fail(estr)
def configure(self, taskType, inSchemaText, outSchemaText):
"""
Parameters
-------------------------------------------------------------------
taskType - What type of task (e.g map, reduce)
- This is an enumeration which is specified in the input protocol
inSchemaText - string containing the input schema
- This is the actual schema with which the data was encoded
i.e it is the writer_schema (see https://avro.apache.org/docs/current/spec.html#Schema+Resolution)
This is the schema the parent process is using which might be different
from the one provided by the subclass of tether_task
outSchemaText - string containing the output scheme
- This is the schema expected by the parent process for the output
"""
self.taskType = taskType
try:
inSchema = avro.schema.parse(inSchemaText)
outSchema = avro.schema.parse(outSchemaText)
if taskType == TaskType.MAP:
self.inReader = avro.io.DatumReader(writers_schema=inSchema, readers_schema=self.inschema)
self.midCollector = Collector(outSchemaText, self.outputClient)
elif taskType == TaskType.REDUCE:
self.midReader = avro.io.DatumReader(writers_schema=inSchema, readers_schema=self.midschema)
# this.outCollector = new Collector<OUT>(outSchema);
self.outCollector = Collector(outSchemaText, self.outputClient)
# determine which fields in the input record are they keys for the reducer
self._red_fkeys = [f.name for f in self.midschema.fields if not (f.order == "ignore")]
except Exception as e:
estr = traceback.format_exc()
self.fail(estr)
@property
def partitions(self):
"""Return the number of map output partitions of this job."""
return self._partitions
@partitions.setter
def partitions(self, npartitions):
self._partitions = npartitions
def input(self, data, count):
"""Recieve input from the server
Parameters
------------------------------------------------------
data - Sould containg the bytes encoding the serialized data
- I think this gets represented as a tring
count - how many input records are provided in the binary stream
"""
try:
# to avro.io.BinaryDecoder
bdata = io.BytesIO(data)
decoder = avro.io.BinaryDecoder(bdata)
for i in range(count):
if self.taskType == TaskType.MAP:
inRecord = self.inReader.read(decoder)
# Do we need to pass midCollector if its declared as an instance variable
self.map(inRecord, self.midCollector)
elif self.taskType == TaskType.REDUCE:
# store the previous record
prev = self.midRecord
# read the new record
self.midRecord = self.midReader.read(decoder)
if prev is not None and not (keys_are_equal(self.midRecord, prev, self._red_fkeys)):
# since the key has changed we need to finalize the processing
# for this group of key,value pairs
self.reduceFlush(prev, self.outCollector)
self.reduce(self.midRecord, self.outCollector)
except Exception as e:
estr = traceback.format_exc()
self.log.warning("failing: %s", estr)
self.fail(estr)
def complete(self):
"""
Process the complete request
"""
if (self.taskType == TaskType.REDUCE) and not (self.midRecord is None):
try:
self.reduceFlush(self.midRecord, self.outCollector)
except Exception as e:
estr = traceback.format_exc()
self.log.warning("failing: %s", estr)
self.fail(estr)
self.outputClient.request("complete", dict())
@abc.abstractmethod
def map(self, record, collector):
"""Called with input values to generate intermediat values (i.e mapper output).
Parameters
----------------------------------------------------------------------------
record - The input record
collector - The collector to collect the output
This is an abstract function which should be overloaded by the application specific
subclass.
"""
@abc.abstractmethod
def reduce(self, record, collector):
"""Called with input values to generate reducer output. Inputs are sorted by the mapper
key.
The reduce function is invoked once for each value belonging to a given key outputted
by the mapper.
Parameters
----------------------------------------------------------------------------
record - The mapper output
collector - The collector to collect the output
This is an abstract function which should be overloaded by the application specific
subclass.
"""
@abc.abstractmethod
def reduceFlush(self, record, collector):
"""
Called with the last intermediate value in each equivalence run.
In other words, reduceFlush is invoked once for each key produced in the reduce
phase. It is called after reduce has been invoked on each value for the given key.
Parameters
------------------------------------------------------------------
record - the last record on which reduce was invoked.
"""
def status(self, message):
"""
Called to update task status
"""
self.outputClient.request("status", {"message": message})
def count(self, group, name, amount):
"""
Called to increment a counter
"""
self.outputClient.request("count", {"group": group, "name": name, "amount": amount})
def fail(self, message):
"""
Call to fail the task.
"""
self.log.error("TetherTask.fail: failure occured message follows:\n%s", message)
try:
message = message.decode()
except AttributeError:
pass
try:
self.outputClient.request("fail", {"message": message})
except Exception as e:
self.log.exception("TetherTask.fail: an exception occured while trying to send the fail message to the output server.")
self.close()
def close(self):
self.log.info("TetherTask.close: closing")
if not (self.clienTransciever is None):
try:
self.clienTransciever.close()
except Exception as e:
# ignore exceptions
pass
# http server is ready to be shutdown
self.ready_for_shutdown.set()
|