1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
|
#!/usr/bin/env python3
##
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Input/Output utilities, including:
* i/o-specific constants
* i/o-specific exceptions
* schema validation
* leaf value encoding and decoding
* datum reader/writer stuff (?)
Also includes a generic representation for data, which
uses the following mapping:
* Schema records are implemented as dict.
* Schema arrays are implemented as list.
* Schema maps are implemented as dict.
* Schema strings are implemented as str.
* Schema bytes are implemented as bytes.
* Schema ints are implemented as int.
* Schema longs are implemented as int.
* Schema floats are implemented as float.
* Schema doubles are implemented as float.
* Schema booleans are implemented as bool.
Validation:
The validation of schema is performed using breadth-first graph
traversal. This allows validation exceptions to pinpoint the exact node
within a complex schema that is problematic, simplifying debugging
considerably. Because it is a traversal, it will also be less
resource-intensive, particularly when validating schema with deep
structures.
Components
==========
Nodes
-----
Avro schemas contain many different schema types. Data about the schema
types is used to validate the data in the corresponding part of a Python
body (the object to be serialized). A node combines a given schema type
with the corresponding Python data, as well as an optional "name" to
identify the specific node. Names are generally the name of a schema
(for named schema) or the name of a field (for child nodes of schema
with named children like maps and records), or None, for schema who's
children are not named (like Arrays).
Iterators
---------
Iterators are generator functions that take a node and return a
generator which will yield a node for each child datum in the data for
the current node. If a node is of a type which has no children, then the
default iterator will immediately exit.
Validators
----------
Validators are used to determine if the datum for a given node is valid
according to the given schema type. Validator functions take a node as
an argument and return a node if the node datum passes validation. If it
does not, the validator must return None.
In most cases, the node returned is identical to the node provided (is
in fact the same object). However, in the case of Union schema, the
returned "valid" node will hold the schema that is represented by the
datum contained. This allows iteration over the child nodes
in that datum, if there are any.
"""
import collections
import datetime
import decimal
import struct
import warnings
from typing import IO, Generator, Iterable, List, Mapping, Optional, Sequence, Union
import avro.constants
import avro.errors
import avro.schema
import avro.timezones
# TODO(hammer): shouldn't ! be < for little-endian (according to spec?)
STRUCT_FLOAT = struct.Struct("<f") # big-endian float
STRUCT_DOUBLE = struct.Struct("<d") # big-endian double
STRUCT_SIGNED_SHORT = struct.Struct(">h") # big-endian signed short
STRUCT_SIGNED_INT = struct.Struct(">i") # big-endian signed int
STRUCT_SIGNED_LONG = struct.Struct(">q") # big-endian signed long
ValidationNode = collections.namedtuple("ValidationNode", ["schema", "datum", "name"])
ValidationNodeGeneratorType = Generator[ValidationNode, None, None]
JsonScalarFieldType = Union[None, bool, str, int, float]
def validate(expected_schema: avro.schema.Schema, datum: object, raise_on_error: bool = False) -> bool:
"""Return True if the provided datum is valid for the expected schema
If raise_on_error is passed and True, then raise a validation error
with specific information about the error encountered in validation.
:param expected_schema: An avro schema type object representing the schema against
which the datum will be validated.
:param datum: The datum to be validated, A python dictionary or some supported type
:param raise_on_error: True if a AvroTypeException should be raised immediately when a
validation problem is encountered.
:raises: AvroTypeException if datum is invalid and raise_on_error is True
:returns: True if datum is valid for expected_schema, False if not.
"""
# use a FIFO queue to process schema nodes breadth first.
nodes = collections.deque([ValidationNode(expected_schema, datum, getattr(expected_schema, "name", None))])
while nodes:
current_node = nodes.popleft()
# _validate_node returns the node for iteration if it is valid. Or it returns None
validated_schema = current_node.schema.validate(current_node.datum)
valid_node = ValidationNode(validated_schema, current_node.datum, current_node.name) if validated_schema else None
if valid_node is None:
if raise_on_error:
raise avro.errors.AvroTypeException(current_node.schema, current_node.name, current_node.datum)
return False # preserve the prior validation behavior of returning false when there are problems.
# if there are children of this node to append, do so.
for child_node in _iterate_node(valid_node):
nodes.append(child_node)
return True
def _iterate_node(node: ValidationNode) -> ValidationNodeGeneratorType:
for item in _ITERATORS.get(node.schema.type, _default_iterator)(node):
yield ValidationNode(*item)
#############
# Iteration #
#############
def _default_iterator(_) -> ValidationNodeGeneratorType:
"""Immediately raise StopIteration.
This exists to prevent problems with iteration over unsupported container types.
"""
yield from ()
def _record_iterator(node: ValidationNode) -> ValidationNodeGeneratorType:
"""Yield each child node of the provided record node."""
schema, datum, _ = node
return (ValidationNode(field.type, datum.get(field.name), field.name) for field in schema.fields)
def _array_iterator(node: ValidationNode) -> ValidationNodeGeneratorType:
"""Yield each child node of the provided array node."""
schema, datum, name = node
return (ValidationNode(schema.items, item, name) for item in datum)
def _map_iterator(node: ValidationNode) -> ValidationNodeGeneratorType:
"""Yield each child node of the provided map node."""
schema, datum, _ = node
child_schema = schema.values
return (ValidationNode(child_schema, child_datum, child_name) for child_name, child_datum in datum.items())
_ITERATORS = {
"record": _record_iterator,
"array": _array_iterator,
"map": _map_iterator,
}
_ITERATORS["error"] = _ITERATORS["request"] = _ITERATORS["record"]
#
# Decoder/Encoder
#
class BinaryDecoder:
"""Read leaf values."""
_reader: IO[bytes]
def __init__(self, reader: IO[bytes]) -> None:
"""
reader is a Python object on which we can call read, seek, and tell.
"""
self._reader = reader
@property
def reader(self) -> IO[bytes]:
return self._reader
def read(self, n: int) -> bytes:
"""
Read n bytes.
"""
if n < 0:
raise avro.errors.InvalidAvroBinaryEncoding(f"Requested {n} bytes to read, expected positive integer.")
read_bytes = self.reader.read(n)
if len(read_bytes) != n:
raise avro.errors.InvalidAvroBinaryEncoding(f"Read {len(read_bytes)} bytes, expected {n} bytes")
return read_bytes
def read_null(self) -> None:
"""
null is written as zero bytes
"""
return None
def read_boolean(self) -> bool:
"""
a boolean is written as a single byte
whose value is either 0 (false) or 1 (true).
"""
return ord(self.read(1)) == 1
def read_int(self) -> int:
"""
int and long values are written using variable-length, zig-zag coding.
"""
return self.read_long()
def read_long(self) -> int:
"""
int and long values are written using variable-length, zig-zag coding.
"""
b = ord(self.read(1))
n = b & 0x7F
shift = 7
while (b & 0x80) != 0:
b = ord(self.read(1))
n |= (b & 0x7F) << shift
shift += 7
datum = (n >> 1) ^ -(n & 1)
return datum
def read_float(self) -> float:
"""
A float is written as 4 bytes.
The float is converted into a 32-bit integer using a method equivalent to
Java's floatToRawIntBits and then encoded in little-endian format.
"""
return float(STRUCT_FLOAT.unpack(self.read(4))[0])
def read_double(self) -> float:
"""
A double is written as 8 bytes.
The double is converted into a 64-bit integer using a method equivalent to
Java's doubleToRawLongBits and then encoded in little-endian format.
"""
return float(STRUCT_DOUBLE.unpack(self.read(8))[0])
def read_decimal_from_bytes(self, precision: int, scale: int) -> decimal.Decimal:
"""
Decimal bytes are decoded as signed short, int or long depending on the
size of bytes.
"""
size = self.read_long()
return self.read_decimal_from_fixed(precision, scale, size)
def read_decimal_from_fixed(self, precision: int, scale: int, size: int) -> decimal.Decimal:
"""
Decimal is encoded as fixed. Fixed instances are encoded using the
number of bytes declared in the schema.
"""
datum = self.read(size)
unscaled_datum = 0
msb = struct.unpack("!b", datum[0:1])[0]
leftmost_bit = (msb >> 7) & 1
if leftmost_bit == 1:
modified_first_byte = ord(datum[0:1]) ^ (1 << 7)
datum = bytearray([modified_first_byte]) + datum[1:]
for offset in range(size):
unscaled_datum <<= 8
unscaled_datum += ord(datum[offset : 1 + offset])
unscaled_datum += pow(-2, (size * 8) - 1)
else:
for offset in range(size):
unscaled_datum <<= 8
unscaled_datum += ord(datum[offset : 1 + offset])
original_prec = decimal.getcontext().prec
try:
decimal.getcontext().prec = precision
scaled_datum = decimal.Decimal(unscaled_datum).scaleb(-scale)
finally:
decimal.getcontext().prec = original_prec
return scaled_datum
def read_bytes(self) -> bytes:
"""
Bytes are encoded as a long followed by that many bytes of data.
"""
return self.read(self.read_long())
def read_utf8(self) -> str:
"""
A string is encoded as a long followed by
that many bytes of UTF-8 encoded character data.
"""
return self.read_bytes().decode("utf-8")
def read_date_from_int(self) -> datetime.date:
"""
int is decoded as python date object.
int stores the number of days from
the unix epoch, 1 January 1970 (ISO calendar).
"""
days_since_epoch = self.read_int()
return datetime.date(1970, 1, 1) + datetime.timedelta(days_since_epoch)
def _build_time_object(self, value: int, scale_to_micro: int) -> datetime.time:
value = value * scale_to_micro
value, microseconds = divmod(value, 1000000)
value, seconds = divmod(value, 60)
value, minutes = divmod(value, 60)
hours = value
return datetime.time(hour=hours, minute=minutes, second=seconds, microsecond=microseconds)
def read_time_millis_from_int(self) -> datetime.time:
"""
int is decoded as python time object which represents
the number of milliseconds after midnight, 00:00:00.000.
"""
milliseconds = self.read_int()
return self._build_time_object(milliseconds, 1000)
def read_time_micros_from_long(self) -> datetime.time:
"""
long is decoded as python time object which represents
the number of microseconds after midnight, 00:00:00.000000.
"""
microseconds = self.read_long()
return self._build_time_object(microseconds, 1)
def read_timestamp_millis_from_long(self) -> datetime.datetime:
"""
long is decoded as python datetime object which represents
the number of milliseconds from the unix epoch, 1 January 1970.
"""
timestamp_millis = self.read_long()
timedelta = datetime.timedelta(microseconds=timestamp_millis * 1000)
unix_epoch_datetime = datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=avro.timezones.utc)
return unix_epoch_datetime + timedelta
def read_timestamp_micros_from_long(self) -> datetime.datetime:
"""
long is decoded as python datetime object which represents
the number of microseconds from the unix epoch, 1 January 1970.
"""
timestamp_micros = self.read_long()
timedelta = datetime.timedelta(microseconds=timestamp_micros)
unix_epoch_datetime = datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=avro.timezones.utc)
return unix_epoch_datetime + timedelta
def skip_null(self) -> None:
pass
def skip_boolean(self) -> None:
self.skip(1)
def skip_int(self) -> None:
self.skip_long()
def skip_long(self) -> None:
b = ord(self.read(1))
while (b & 0x80) != 0:
b = ord(self.read(1))
def skip_float(self) -> None:
self.skip(4)
def skip_double(self) -> None:
self.skip(8)
def skip_bytes(self) -> None:
self.skip(self.read_long())
def skip_utf8(self) -> None:
self.skip_bytes()
def skip(self, n: int) -> None:
self.reader.seek(self.reader.tell() + n)
class BinaryEncoder:
"""Write leaf values."""
_writer: IO[bytes]
def __init__(self, writer: IO[bytes]) -> None:
"""
writer is a Python object on which we can call write.
"""
self._writer = writer
@property
def writer(self) -> IO[bytes]:
return self._writer
def write(self, datum: bytes) -> None:
"""Write an arbitrary datum."""
self.writer.write(datum)
def write_null(self, datum: None) -> None:
"""
null is written as zero bytes
"""
def write_boolean(self, datum: bool) -> None:
"""
a boolean is written as a single byte
whose value is either 0 (false) or 1 (true).
"""
self.write(bytearray([bool(datum)]))
def write_int(self, datum: int) -> None:
"""
int and long values are written using variable-length, zig-zag coding.
"""
self.write_long(datum)
def write_long(self, datum: int) -> None:
"""
int and long values are written using variable-length, zig-zag coding.
"""
datum = (datum << 1) ^ (datum >> 63)
while (datum & ~0x7F) != 0:
self.write(bytearray([(datum & 0x7F) | 0x80]))
datum >>= 7
self.write(bytearray([datum]))
def write_float(self, datum: float) -> None:
"""
A float is written as 4 bytes.
The float is converted into a 32-bit integer using a method equivalent to
Java's floatToRawIntBits and then encoded in little-endian format.
"""
self.write(STRUCT_FLOAT.pack(datum))
def write_double(self, datum: float) -> None:
"""
A double is written as 8 bytes.
The double is converted into a 64-bit integer using a method equivalent to
Java's doubleToRawLongBits and then encoded in little-endian format.
"""
self.write(STRUCT_DOUBLE.pack(datum))
def write_decimal_bytes(self, datum: decimal.Decimal, scale: int) -> None:
"""
Decimal in bytes are encoded as long. Since size of packed value in bytes for
signed long is 8, 8 bytes are written.
"""
sign, digits, exp = datum.as_tuple()
if (-1 * int(exp)) > scale:
raise avro.errors.AvroOutOfScaleException(scale, datum, exp)
unscaled_datum = 0
for digit in digits:
unscaled_datum = (unscaled_datum * 10) + digit
bits_req = unscaled_datum.bit_length() + 1
if sign:
unscaled_datum = (1 << bits_req) - unscaled_datum
bytes_req = bits_req // 8
padding_bits = ~((1 << bits_req) - 1) if sign else 0
packed_bits = padding_bits | unscaled_datum
bytes_req += 1 if (bytes_req << 3) < bits_req else 0
self.write_long(bytes_req)
for index in range(bytes_req - 1, -1, -1):
bits_to_write = packed_bits >> (8 * index)
self.write(bytearray([bits_to_write & 0xFF]))
def write_decimal_fixed(self, datum: decimal.Decimal, scale: int, size: int) -> None:
"""
Decimal in fixed are encoded as size of fixed bytes.
"""
sign, digits, exp = datum.as_tuple()
if (-1 * int(exp)) > scale:
raise avro.errors.AvroOutOfScaleException(scale, datum, exp)
unscaled_datum = 0
for digit in digits:
unscaled_datum = (unscaled_datum * 10) + digit
bits_req = unscaled_datum.bit_length() + 1
size_in_bits = size * 8
offset_bits = size_in_bits - bits_req
mask = 2**size_in_bits - 1
bit = 1
for i in range(bits_req):
mask ^= bit
bit <<= 1
if bits_req < 8:
bytes_req = 1
else:
bytes_req = bits_req // 8
if bits_req % 8 != 0:
bytes_req += 1
if sign:
unscaled_datum = (1 << bits_req) - unscaled_datum
unscaled_datum = mask | unscaled_datum
for index in range(size - 1, -1, -1):
bits_to_write = unscaled_datum >> (8 * index)
self.write(bytearray([bits_to_write & 0xFF]))
else:
for i in range(offset_bits // 8):
self.write(b"\x00")
for index in range(bytes_req - 1, -1, -1):
bits_to_write = unscaled_datum >> (8 * index)
self.write(bytearray([bits_to_write & 0xFF]))
def write_bytes(self, datum: bytes) -> None:
"""
Bytes are encoded as a long followed by that many bytes of data.
"""
self.write_long(len(datum))
self.write(struct.pack(f"{len(datum)}s", datum))
def write_utf8(self, datum: str) -> None:
"""
A string is encoded as a long followed by
that many bytes of UTF-8 encoded character data.
"""
self.write_bytes(datum.encode("utf-8"))
def write_date_int(self, datum: datetime.date) -> None:
"""
Encode python date object as int.
It stores the number of days from
the unix epoch, 1 January 1970 (ISO calendar).
"""
delta_date = datum - datetime.date(1970, 1, 1)
self.write_int(delta_date.days)
def write_time_millis_int(self, datum: datetime.time) -> None:
"""
Encode python time object as int.
It stores the number of milliseconds from midnight, 00:00:00.000
"""
milliseconds = datum.hour * 3600000 + datum.minute * 60000 + datum.second * 1000 + datum.microsecond // 1000
self.write_int(milliseconds)
def write_time_micros_long(self, datum: datetime.time) -> None:
"""
Encode python time object as long.
It stores the number of microseconds from midnight, 00:00:00.000000
"""
microseconds = datum.hour * 3600000000 + datum.minute * 60000000 + datum.second * 1000000 + datum.microsecond
self.write_long(microseconds)
def _timedelta_total_microseconds(self, timedelta_: datetime.timedelta) -> int:
return timedelta_.microseconds + (timedelta_.seconds + timedelta_.days * 24 * 3600) * 10**6
def write_timestamp_millis_long(self, datum: datetime.datetime) -> None:
"""
Encode python datetime object as long.
It stores the number of milliseconds from midnight of unix epoch, 1 January 1970.
"""
datum = datum.astimezone(tz=avro.timezones.utc)
timedelta = datum - datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=avro.timezones.utc)
milliseconds = self._timedelta_total_microseconds(timedelta) // 1000
self.write_long(milliseconds)
def write_timestamp_micros_long(self, datum: datetime.datetime) -> None:
"""
Encode python datetime object as long.
It stores the number of microseconds from midnight of unix epoch, 1 January 1970.
"""
datum = datum.astimezone(tz=avro.timezones.utc)
timedelta = datum - datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=avro.timezones.utc)
microseconds = self._timedelta_total_microseconds(timedelta)
self.write_long(microseconds)
#
# DatumReader/Writer
#
class DatumReader:
"""Deserialize Avro-encoded data into a Python data structure."""
_writers_schema: Optional[avro.schema.Schema]
_readers_schema: Optional[avro.schema.Schema]
def __init__(self, writers_schema: Optional[avro.schema.Schema] = None, readers_schema: Optional[avro.schema.Schema] = None) -> None:
"""
As defined in the Avro specification, we call the schema encoded
in the data the "writer's schema", and the schema expected by the
reader the "reader's schema".
"""
self._writers_schema = writers_schema
self._readers_schema = readers_schema
@property
def writers_schema(self) -> Optional[avro.schema.Schema]:
return self._writers_schema
@writers_schema.setter
def writers_schema(self, writers_schema: avro.schema.Schema) -> None:
self._writers_schema = writers_schema
@property
def readers_schema(self) -> Optional[avro.schema.Schema]:
return self._readers_schema
@readers_schema.setter
def readers_schema(self, readers_schema: avro.schema.Schema) -> None:
self._readers_schema = readers_schema
def read(self, decoder: "BinaryDecoder") -> object:
if self.writers_schema is None:
raise avro.errors.IONotReadyException("Cannot read without a writer's schema.")
if self.readers_schema is None:
self.readers_schema = self.writers_schema
return self.read_data(self.writers_schema, self.readers_schema, decoder)
def read_data(self, writers_schema: avro.schema.Schema, readers_schema: avro.schema.Schema, decoder: "BinaryDecoder") -> object:
# schema matching
if not readers_schema.match(writers_schema):
raise avro.errors.SchemaResolutionException("Schemas do not match.", writers_schema, readers_schema)
logical_type = getattr(writers_schema, "logical_type", None)
# function dispatch for reading data based on type of writer's schema
if isinstance(writers_schema, avro.schema.UnionSchema) and isinstance(readers_schema, avro.schema.UnionSchema):
return self.read_union(writers_schema, readers_schema, decoder)
if isinstance(readers_schema, avro.schema.UnionSchema):
# schema resolution: reader's schema is a union, writer's schema is not
for s in readers_schema.schemas:
if s.match(writers_schema):
return self.read_data(writers_schema, s, decoder)
# This shouldn't happen because of the match check at the start of this method.
raise avro.errors.SchemaResolutionException("Schemas do not match.", writers_schema, readers_schema)
if writers_schema.type == "null":
return None
if writers_schema.type == "boolean":
return decoder.read_boolean()
if writers_schema.type == "string":
return decoder.read_utf8()
if writers_schema.type == "int":
if logical_type == avro.constants.DATE:
return decoder.read_date_from_int()
if logical_type == avro.constants.TIME_MILLIS:
return decoder.read_time_millis_from_int()
return decoder.read_int()
if writers_schema.type == "long":
if logical_type == avro.constants.TIME_MICROS:
return decoder.read_time_micros_from_long()
if logical_type == avro.constants.TIMESTAMP_MILLIS:
return decoder.read_timestamp_millis_from_long()
if logical_type == avro.constants.TIMESTAMP_MICROS:
return decoder.read_timestamp_micros_from_long()
return decoder.read_long()
if writers_schema.type == "float":
return decoder.read_float()
if writers_schema.type == "double":
return decoder.read_double()
if writers_schema.type == "bytes":
if logical_type == "decimal":
precision = writers_schema.get_prop("precision")
if not (isinstance(precision, int) and precision > 0):
warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal precision {precision}. Must be a positive integer."))
return decoder.read_bytes()
scale = writers_schema.get_prop("scale")
if not (isinstance(scale, int) and scale >= 0):
warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal scale {scale}. Must be a non-negative integer."))
return decoder.read_bytes()
return decoder.read_decimal_from_bytes(precision, scale)
return decoder.read_bytes()
if isinstance(writers_schema, avro.schema.FixedSchema) and isinstance(readers_schema, avro.schema.FixedSchema):
if logical_type == "decimal":
precision = writers_schema.get_prop("precision")
if not (isinstance(precision, int) and precision > 0):
warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal precision {precision}. Must be a positive integer."))
return self.read_fixed(writers_schema, readers_schema, decoder)
scale = writers_schema.get_prop("scale")
if not (isinstance(scale, int) and scale >= 0):
warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal scale {scale}. Must be a non-negative integer."))
return self.read_fixed(writers_schema, readers_schema, decoder)
return decoder.read_decimal_from_fixed(precision, scale, writers_schema.size)
return self.read_fixed(writers_schema, readers_schema, decoder)
if isinstance(writers_schema, avro.schema.EnumSchema) and isinstance(readers_schema, avro.schema.EnumSchema):
return self.read_enum(writers_schema, readers_schema, decoder)
if isinstance(writers_schema, avro.schema.ArraySchema) and isinstance(readers_schema, avro.schema.ArraySchema):
return self.read_array(writers_schema, readers_schema, decoder)
if isinstance(writers_schema, avro.schema.MapSchema) and isinstance(readers_schema, avro.schema.MapSchema):
return self.read_map(writers_schema, readers_schema, decoder)
if isinstance(writers_schema, avro.schema.RecordSchema) and isinstance(readers_schema, avro.schema.RecordSchema):
# .type in ["record", "error", "request"]:
return self.read_record(writers_schema, readers_schema, decoder)
raise avro.errors.AvroException(f"Cannot read unknown schema type: {writers_schema.type}")
def skip_data(self, writers_schema: avro.schema.Schema, decoder: BinaryDecoder) -> None:
if writers_schema.type == "null":
return decoder.skip_null()
if writers_schema.type == "boolean":
return decoder.skip_boolean()
if writers_schema.type == "string":
return decoder.skip_utf8()
if writers_schema.type == "int":
return decoder.skip_int()
if writers_schema.type == "long":
return decoder.skip_long()
if writers_schema.type == "float":
return decoder.skip_float()
if writers_schema.type == "double":
return decoder.skip_double()
if writers_schema.type == "bytes":
return decoder.skip_bytes()
if isinstance(writers_schema, avro.schema.FixedSchema):
return self.skip_fixed(writers_schema, decoder)
if isinstance(writers_schema, avro.schema.EnumSchema):
return self.skip_enum(writers_schema, decoder)
if isinstance(writers_schema, avro.schema.ArraySchema):
return self.skip_array(writers_schema, decoder)
if isinstance(writers_schema, avro.schema.MapSchema):
return self.skip_map(writers_schema, decoder)
if isinstance(writers_schema, avro.schema.UnionSchema):
return self.skip_union(writers_schema, decoder)
if isinstance(writers_schema, avro.schema.RecordSchema):
return self.skip_record(writers_schema, decoder)
raise avro.errors.AvroException(f"Unknown schema type: {writers_schema.type}")
def read_fixed(self, writers_schema: avro.schema.FixedSchema, readers_schema: avro.schema.Schema, decoder: BinaryDecoder) -> bytes:
"""
Fixed instances are encoded using the number of bytes declared
in the schema.
"""
return decoder.read(writers_schema.size)
def skip_fixed(self, writers_schema: avro.schema.FixedSchema, decoder: BinaryDecoder) -> None:
return decoder.skip(writers_schema.size)
def read_enum(self, writers_schema: avro.schema.EnumSchema, readers_schema: avro.schema.EnumSchema, decoder: BinaryDecoder) -> str:
"""
An enum is encoded by a int, representing the zero-based position
of the symbol in the schema.
"""
# read data
index_of_symbol = decoder.read_int()
if index_of_symbol >= len(writers_schema.symbols):
raise avro.errors.SchemaResolutionException(
f"Can't access enum index {index_of_symbol} for enum with {len(writers_schema.symbols)} symbols", writers_schema, readers_schema
)
read_symbol = writers_schema.symbols[index_of_symbol]
# schema resolution
if read_symbol not in readers_schema.symbols:
raise avro.errors.SchemaResolutionException(f"Symbol {read_symbol} not present in Reader's Schema", writers_schema, readers_schema)
return read_symbol
def skip_enum(self, writers_schema: avro.schema.EnumSchema, decoder: BinaryDecoder) -> None:
return decoder.skip_int()
def read_array(self, writers_schema: avro.schema.ArraySchema, readers_schema: avro.schema.ArraySchema, decoder: BinaryDecoder) -> List[object]:
"""
Arrays are encoded as a series of blocks.
Each block consists of a long count value,
followed by that many array items.
A block with count zero indicates the end of the array.
Each item is encoded per the array's item schema.
If a block's count is negative,
then the count is followed immediately by a long block size,
indicating the number of bytes in the block.
The actual count in this case
is the absolute value of the count written.
"""
read_items = []
block_count = decoder.read_long()
while block_count != 0:
if block_count < 0:
block_count = -block_count
decoder.skip_long()
for i in range(block_count):
read_items.append(self.read_data(writers_schema.items, readers_schema.items, decoder))
block_count = decoder.read_long()
return read_items
def skip_array(self, writers_schema: avro.schema.ArraySchema, decoder: BinaryDecoder) -> None:
block_count = decoder.read_long()
while block_count != 0:
if block_count < 0:
block_size = decoder.read_long()
decoder.skip(block_size)
else:
for i in range(block_count):
self.skip_data(writers_schema.items, decoder)
block_count = decoder.read_long()
def read_map(self, writers_schema: avro.schema.MapSchema, readers_schema: avro.schema.MapSchema, decoder: BinaryDecoder) -> Mapping[str, object]:
"""
Maps are encoded as a series of blocks.
Each block consists of a long count value,
followed by that many key/value pairs.
A block with count zero indicates the end of the map.
Each item is encoded per the map's value schema.
If a block's count is negative,
then the count is followed immediately by a long block size,
indicating the number of bytes in the block.
The actual count in this case
is the absolute value of the count written.
"""
read_items = {}
block_count = decoder.read_long()
while block_count != 0:
if block_count < 0:
block_count = -block_count
decoder.skip_long()
for i in range(block_count):
key = decoder.read_utf8()
read_items[key] = self.read_data(writers_schema.values, readers_schema.values, decoder)
block_count = decoder.read_long()
return read_items
def skip_map(self, writers_schema: avro.schema.MapSchema, decoder: BinaryDecoder) -> None:
block_count = decoder.read_long()
while block_count != 0:
if block_count < 0:
block_size = decoder.read_long()
decoder.skip(block_size)
else:
for i in range(block_count):
decoder.skip_utf8()
self.skip_data(writers_schema.values, decoder)
block_count = decoder.read_long()
def read_union(self, writers_schema: avro.schema.UnionSchema, readers_schema: avro.schema.UnionSchema, decoder: BinaryDecoder) -> object:
"""
A union is encoded by first writing an int value indicating
the zero-based position within the union of the schema of its value.
The value is then encoded per the indicated schema within the union.
"""
# schema resolution
index_of_schema = int(decoder.read_long())
if index_of_schema >= len(writers_schema.schemas):
raise avro.errors.SchemaResolutionException(
f"Can't access branch index {index_of_schema} for union with {len(writers_schema.schemas)} branches", writers_schema, readers_schema
)
selected_writers_schema = writers_schema.schemas[index_of_schema]
# read data
return self.read_data(selected_writers_schema, readers_schema, decoder)
def skip_union(self, writers_schema: avro.schema.UnionSchema, decoder: BinaryDecoder) -> None:
index_of_schema = int(decoder.read_long())
if index_of_schema >= len(writers_schema.schemas):
raise avro.errors.SchemaResolutionException(
f"Can't access branch index {index_of_schema} for union with {len(writers_schema.schemas)} branches", writers_schema
)
return self.skip_data(writers_schema.schemas[index_of_schema], decoder)
def read_record(
self, writers_schema: avro.schema.RecordSchema, readers_schema: avro.schema.RecordSchema, decoder: BinaryDecoder
) -> Mapping[str, object]:
"""
A record is encoded by encoding the values of its fields
in the order that they are declared. In other words, a record
is encoded as just the concatenation of the encodings of its fields.
Field values are encoded per their schema.
Schema Resolution:
* the ordering of fields may be different: fields are matched by name.
* schemas for fields with the same name in both records are resolved
recursively.
* if the writer's record contains a field with a name not present in the
reader's record, the writer's value for that field is ignored.
* if the reader's record schema has a field that contains a default value,
and writer's schema does not have a field with the same name, then the
reader should use the default value from its field.
* if the reader's record schema has a field with no default value, and
writer's schema does not have a field with the same name, then the
field's value is unset.
"""
# schema resolution
readers_fields_dict = readers_schema.fields_dict
read_record = {}
for field in writers_schema.fields:
readers_field = readers_fields_dict.get(field.name)
if readers_field is not None:
field_val = self.read_data(field.type, readers_field.type, decoder)
read_record[field.name] = field_val
else:
self.skip_data(field.type, decoder)
# fill in default values
if len(readers_fields_dict) > len(read_record):
writers_fields_dict = writers_schema.fields_dict
for field_name, field in readers_fields_dict.items():
if field_name not in writers_fields_dict:
if not field.has_default:
raise avro.errors.SchemaResolutionException(f"No default value for field {field_name}", writers_schema, readers_schema)
field_val = self._read_default_value(field.type, field.default)
read_record[field.name] = field_val
return read_record
def skip_record(self, writers_schema: avro.schema.RecordSchema, decoder: BinaryDecoder) -> None:
for field in writers_schema.fields:
self.skip_data(field.type, decoder)
def _read_default_value(self, field_schema: avro.schema.Schema, default_value: object) -> object:
"""
Basically a JSON Decoder?
"""
if field_schema.type == "null":
if default_value is None:
return None
raise avro.errors.InvalidDefaultException(field_schema, default_value)
if field_schema.type == "boolean":
return bool(default_value)
if field_schema.type in ("int", "long"):
if isinstance(default_value, int):
return default_value
raise avro.errors.InvalidDefaultException(field_schema, default_value)
if field_schema.type in ("float", "double"):
if isinstance(default_value, float):
return default_value
raise avro.errors.InvalidDefaultException(field_schema, default_value)
if field_schema.type in ("bytes", "fixed"):
if isinstance(default_value, bytes):
return default_value
if isinstance(default_value, str):
return default_value.encode()
raise avro.errors.InvalidDefaultException(field_schema, default_value)
if field_schema.type in ("enum", "string"):
if isinstance(default_value, str):
return default_value
raise avro.errors.InvalidDefaultException(field_schema, default_value)
if isinstance(field_schema, avro.schema.ArraySchema):
if isinstance(default_value, Iterable):
return [self._read_default_value(field_schema.items, json_val) for json_val in default_value]
raise avro.errors.InvalidDefaultException(field_schema, default_value)
if isinstance(field_schema, avro.schema.MapSchema):
if isinstance(default_value, Mapping):
return {key: self._read_default_value(field_schema.values, json_val) for key, json_val in default_value.items()}
raise avro.errors.InvalidDefaultException(field_schema, default_value)
if isinstance(field_schema, avro.schema.UnionSchema):
return self._read_default_value(field_schema.schemas[0], default_value)
if isinstance(field_schema, avro.schema.RecordSchema):
if not isinstance(default_value, Mapping):
raise avro.errors.InvalidDefaultException(field_schema, default_value)
read_record = {}
for field in field_schema.fields:
json_val = default_value.get(field.name)
if json_val is None:
json_val = field.default
field_val = self._read_default_value(field.type, json_val)
read_record[field.name] = field_val
return read_record
raise avro.errors.AvroException(f"Unknown type: {field_schema.type}")
class DatumWriter:
"""DatumWriter for generic python objects."""
_writers_schema: Optional[avro.schema.Schema]
def __init__(self, writers_schema: Optional[avro.schema.Schema] = None) -> None:
self._writers_schema = writers_schema
@property
def writers_schema(self) -> Optional[avro.schema.Schema]:
return self._writers_schema
@writers_schema.setter
def writers_schema(self, writers_schema: avro.schema.Schema) -> None:
self._writers_schema = writers_schema
def write(self, datum: object, encoder: BinaryEncoder) -> None:
if self.writers_schema is None:
raise avro.errors.IONotReadyException("Cannot write without a writer's schema.")
validate(self.writers_schema, datum, raise_on_error=True)
self.write_data(self.writers_schema, datum, encoder)
def write_data(self, writers_schema: avro.schema.Schema, datum: object, encoder: BinaryEncoder) -> None:
# function dispatch to write datum
logical_type = getattr(writers_schema, "logical_type", None)
if writers_schema.type == "null":
if datum is None:
return encoder.write_null(datum)
raise avro.errors.AvroTypeException(writers_schema, datum)
if writers_schema.type == "boolean":
if isinstance(datum, bool):
return encoder.write_boolean(datum)
raise avro.errors.AvroTypeException(writers_schema, datum)
if writers_schema.type == "string":
if isinstance(datum, str):
return encoder.write_utf8(datum)
raise avro.errors.AvroTypeException(writers_schema, datum)
if writers_schema.type == "int":
if logical_type == avro.constants.DATE:
if isinstance(datum, datetime.date):
return encoder.write_date_int(datum)
warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a date type"))
elif logical_type == avro.constants.TIME_MILLIS:
if isinstance(datum, datetime.time):
return encoder.write_time_millis_int(datum)
warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a time type"))
if isinstance(datum, int):
return encoder.write_int(datum)
raise avro.errors.AvroTypeException(writers_schema, datum)
if writers_schema.type == "long":
if logical_type == avro.constants.TIME_MICROS:
if isinstance(datum, datetime.time):
return encoder.write_time_micros_long(datum)
warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a time type"))
elif logical_type == avro.constants.TIMESTAMP_MILLIS:
if isinstance(datum, datetime.datetime):
return encoder.write_timestamp_millis_long(datum)
warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a datetime type"))
elif logical_type == avro.constants.TIMESTAMP_MICROS:
if isinstance(datum, datetime.datetime):
return encoder.write_timestamp_micros_long(datum)
warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a datetime type"))
if isinstance(datum, int):
return encoder.write_long(datum)
raise avro.errors.AvroTypeException(writers_schema, datum)
if writers_schema.type == "float":
if isinstance(datum, (int, float)):
return encoder.write_float(datum)
raise avro.errors.AvroTypeException(writers_schema, datum)
if writers_schema.type == "double":
if isinstance(datum, (int, float)):
return encoder.write_double(datum)
raise avro.errors.AvroTypeException(writers_schema, datum)
if writers_schema.type == "bytes":
if logical_type == "decimal":
scale = writers_schema.get_prop("scale")
if not (isinstance(scale, int) and scale >= 0):
warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal scale {scale}. Must be a non-negative integer."))
elif not isinstance(datum, decimal.Decimal):
warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a decimal type"))
else:
return encoder.write_decimal_bytes(datum, scale)
if isinstance(datum, bytes):
return encoder.write_bytes(datum)
raise avro.errors.AvroTypeException(writers_schema, datum)
if isinstance(writers_schema, avro.schema.FixedSchema):
if logical_type == "decimal":
scale = writers_schema.get_prop("scale")
size = writers_schema.size
if not (isinstance(scale, int) and scale >= 0):
warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal scale {scale}. Must be a non-negative integer."))
elif not isinstance(datum, decimal.Decimal):
warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a decimal type"))
else:
return encoder.write_decimal_fixed(datum, scale, size)
if isinstance(datum, bytes):
return self.write_fixed(writers_schema, datum, encoder)
raise avro.errors.AvroTypeException(writers_schema, datum)
if isinstance(writers_schema, avro.schema.EnumSchema):
if isinstance(datum, str):
return self.write_enum(writers_schema, datum, encoder)
raise avro.errors.AvroTypeException(writers_schema, datum)
if isinstance(writers_schema, avro.schema.ArraySchema):
if isinstance(datum, Sequence):
return self.write_array(writers_schema, datum, encoder)
raise avro.errors.AvroTypeException(writers_schema, datum)
if isinstance(writers_schema, avro.schema.MapSchema):
if isinstance(datum, Mapping):
return self.write_map(writers_schema, datum, encoder)
raise avro.errors.AvroTypeException(writers_schema, datum)
if isinstance(writers_schema, avro.schema.UnionSchema):
return self.write_union(writers_schema, datum, encoder)
if isinstance(writers_schema, avro.schema.RecordSchema):
if isinstance(datum, Mapping):
return self.write_record(writers_schema, datum, encoder)
raise avro.errors.AvroTypeException(writers_schema, datum)
raise avro.errors.AvroException(f"Unknown type: {writers_schema.type}")
def write_fixed(self, writers_schema: avro.schema.FixedSchema, datum: bytes, encoder: BinaryEncoder) -> None:
"""
Fixed instances are encoded using the number of bytes declared
in the schema.
"""
return encoder.write(datum)
def write_enum(self, writers_schema: avro.schema.EnumSchema, datum: str, encoder: BinaryEncoder) -> None:
"""
An enum is encoded by a int, representing the zero-based position
of the symbol in the schema.
"""
index_of_datum = writers_schema.symbols.index(datum)
return encoder.write_int(index_of_datum)
def write_array(self, writers_schema: avro.schema.ArraySchema, datum: Sequence[object], encoder: BinaryEncoder) -> None:
"""
Arrays are encoded as a series of blocks.
Each block consists of a long count value,
followed by that many array items.
A block with count zero indicates the end of the array.
Each item is encoded per the array's item schema.
If a block's count is negative,
then the count is followed immediately by a long block size,
indicating the number of bytes in the block.
The actual count in this case
is the absolute value of the count written.
"""
if len(datum) > 0:
encoder.write_long(len(datum))
for item in datum:
self.write_data(writers_schema.items, item, encoder)
return encoder.write_long(0)
def write_map(self, writers_schema: avro.schema.MapSchema, datum: Mapping[str, object], encoder: BinaryEncoder) -> None:
"""
Maps are encoded as a series of blocks.
Each block consists of a long count value,
followed by that many key/value pairs.
A block with count zero indicates the end of the map.
Each item is encoded per the map's value schema.
If a block's count is negative,
then the count is followed immediately by a long block size,
indicating the number of bytes in the block.
The actual count in this case
is the absolute value of the count written.
"""
if len(datum) > 0:
encoder.write_long(len(datum))
for key, val in datum.items():
encoder.write_utf8(key)
self.write_data(writers_schema.values, val, encoder)
return encoder.write_long(0)
def write_union(self, writers_schema: avro.schema.UnionSchema, datum: object, encoder: BinaryEncoder) -> None:
"""
A union is encoded by first writing an int value indicating
the zero-based position within the union of the schema of its value.
The value is then encoded per the indicated schema within the union.
"""
# resolve union
index_of_schema = -1
for i, candidate_schema in enumerate(writers_schema.schemas):
if validate(candidate_schema, datum):
index_of_schema = i
if index_of_schema < 0:
raise avro.errors.AvroTypeException(writers_schema, datum)
# write data
encoder.write_long(index_of_schema)
return self.write_data(writers_schema.schemas[index_of_schema], datum, encoder)
def write_record(self, writers_schema: avro.schema.RecordSchema, datum: Mapping[str, object], encoder: BinaryEncoder) -> None:
"""
A record is encoded by encoding the values of its fields
in the order that they are declared. In other words, a record
is encoded as just the concatenation of the encodings of its fields.
Field values are encoded per their schema.
"""
for field in writers_schema.fields:
self.write_data(field.type, datum.get(field.name), encoder)
|