File: io.py

package info (click to toggle)
python-avro 1.12.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 2,180 kB
  • sloc: python: 7,734; sh: 771; xml: 738; java: 386; makefile: 28
file content (1185 lines) | stat: -rw-r--r-- 51,987 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
#!/usr/bin/env python3

##
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Input/Output utilities, including:

 * i/o-specific constants
 * i/o-specific exceptions
 * schema validation
 * leaf value encoding and decoding
 * datum reader/writer stuff (?)

Also includes a generic representation for data, which
uses the following mapping:

  * Schema records are implemented as dict.
  * Schema arrays are implemented as list.
  * Schema maps are implemented as dict.
  * Schema strings are implemented as str.
  * Schema bytes are implemented as bytes.
  * Schema ints are implemented as int.
  * Schema longs are implemented as int.
  * Schema floats are implemented as float.
  * Schema doubles are implemented as float.
  * Schema booleans are implemented as bool.

Validation:

The validation of schema is performed using breadth-first graph
traversal. This allows validation exceptions to pinpoint the exact node
within a complex schema that is problematic, simplifying debugging
considerably. Because it is a traversal, it will also be less
resource-intensive, particularly when validating schema with deep
structures.

Components
==========

Nodes
-----
Avro schemas contain many different schema types. Data about the schema
types is used to validate the data in the corresponding part of a Python
body (the object to be serialized). A node combines a given schema type
with the corresponding Python data, as well as an optional "name" to
identify the specific node. Names are generally the name of a schema
(for named schema) or the name of a field (for child nodes of schema
with named children like maps and records), or None, for schema who's
children are not named (like Arrays).

Iterators
---------
Iterators are generator functions that take a node and return a
generator which will yield a node for each child datum in the data for
the current node. If a node is of a type which has no children, then the
default iterator will immediately exit.

Validators
----------
Validators are used to determine if the datum for a given node is valid
according to the given schema type. Validator functions take a node as
an argument and return a node if the node datum passes validation. If it
does not, the validator must return None.

In most cases, the node returned is identical to the node provided (is
in fact the same object). However, in the case of Union schema, the
returned "valid" node will hold the schema that is represented by the
datum contained. This allows iteration over the child nodes
in that datum, if there are any.
"""

import collections
import datetime
import decimal
import struct
import warnings
from typing import IO, Generator, Iterable, List, Mapping, Optional, Sequence, Union

import avro.constants
import avro.errors
import avro.schema
import avro.timezones

# TODO(hammer): shouldn't ! be < for little-endian (according to spec?)
STRUCT_FLOAT = struct.Struct("<f")  # big-endian float
STRUCT_DOUBLE = struct.Struct("<d")  # big-endian double
STRUCT_SIGNED_SHORT = struct.Struct(">h")  # big-endian signed short
STRUCT_SIGNED_INT = struct.Struct(">i")  # big-endian signed int
STRUCT_SIGNED_LONG = struct.Struct(">q")  # big-endian signed long

ValidationNode = collections.namedtuple("ValidationNode", ["schema", "datum", "name"])
ValidationNodeGeneratorType = Generator[ValidationNode, None, None]
JsonScalarFieldType = Union[None, bool, str, int, float]


def validate(expected_schema: avro.schema.Schema, datum: object, raise_on_error: bool = False) -> bool:
    """Return True if the provided datum is valid for the expected schema

    If raise_on_error is passed and True, then raise a validation error
    with specific information about the error encountered in validation.

    :param expected_schema: An avro schema type object representing the schema against
                            which the datum will be validated.
    :param datum: The datum to be validated, A python dictionary or some supported type
    :param raise_on_error: True if a AvroTypeException should be raised immediately when a
                           validation problem is encountered.
    :raises: AvroTypeException if datum is invalid and raise_on_error is True
    :returns: True if datum is valid for expected_schema, False if not.
    """
    # use a FIFO queue to process schema nodes breadth first.
    nodes = collections.deque([ValidationNode(expected_schema, datum, getattr(expected_schema, "name", None))])

    while nodes:
        current_node = nodes.popleft()

        # _validate_node returns the node for iteration if it is valid. Or it returns None
        validated_schema = current_node.schema.validate(current_node.datum)
        valid_node = ValidationNode(validated_schema, current_node.datum, current_node.name) if validated_schema else None

        if valid_node is None:
            if raise_on_error:
                raise avro.errors.AvroTypeException(current_node.schema, current_node.name, current_node.datum)
            return False  # preserve the prior validation behavior of returning false when there are problems.
        # if there are children of this node to append, do so.
        for child_node in _iterate_node(valid_node):
            nodes.append(child_node)

    return True


def _iterate_node(node: ValidationNode) -> ValidationNodeGeneratorType:
    for item in _ITERATORS.get(node.schema.type, _default_iterator)(node):
        yield ValidationNode(*item)


#############
# Iteration #
#############


def _default_iterator(_) -> ValidationNodeGeneratorType:
    """Immediately raise StopIteration.

    This exists to prevent problems with iteration over unsupported container types.
    """
    yield from ()


def _record_iterator(node: ValidationNode) -> ValidationNodeGeneratorType:
    """Yield each child node of the provided record node."""
    schema, datum, _ = node
    return (ValidationNode(field.type, datum.get(field.name), field.name) for field in schema.fields)


def _array_iterator(node: ValidationNode) -> ValidationNodeGeneratorType:
    """Yield each child node of the provided array node."""
    schema, datum, name = node
    return (ValidationNode(schema.items, item, name) for item in datum)


def _map_iterator(node: ValidationNode) -> ValidationNodeGeneratorType:
    """Yield each child node of the provided map node."""
    schema, datum, _ = node
    child_schema = schema.values
    return (ValidationNode(child_schema, child_datum, child_name) for child_name, child_datum in datum.items())


_ITERATORS = {
    "record": _record_iterator,
    "array": _array_iterator,
    "map": _map_iterator,
}
_ITERATORS["error"] = _ITERATORS["request"] = _ITERATORS["record"]


#
# Decoder/Encoder
#


class BinaryDecoder:
    """Read leaf values."""

    _reader: IO[bytes]

    def __init__(self, reader: IO[bytes]) -> None:
        """
        reader is a Python object on which we can call read, seek, and tell.
        """
        self._reader = reader

    @property
    def reader(self) -> IO[bytes]:
        return self._reader

    def read(self, n: int) -> bytes:
        """
        Read n bytes.
        """
        if n < 0:
            raise avro.errors.InvalidAvroBinaryEncoding(f"Requested {n} bytes to read, expected positive integer.")
        read_bytes = self.reader.read(n)
        if len(read_bytes) != n:
            raise avro.errors.InvalidAvroBinaryEncoding(f"Read {len(read_bytes)} bytes, expected {n} bytes")
        return read_bytes

    def read_null(self) -> None:
        """
        null is written as zero bytes
        """
        return None

    def read_boolean(self) -> bool:
        """
        a boolean is written as a single byte
        whose value is either 0 (false) or 1 (true).
        """
        return ord(self.read(1)) == 1

    def read_int(self) -> int:
        """
        int and long values are written using variable-length, zig-zag coding.
        """
        return self.read_long()

    def read_long(self) -> int:
        """
        int and long values are written using variable-length, zig-zag coding.
        """
        b = ord(self.read(1))
        n = b & 0x7F
        shift = 7
        while (b & 0x80) != 0:
            b = ord(self.read(1))
            n |= (b & 0x7F) << shift
            shift += 7
        datum = (n >> 1) ^ -(n & 1)
        return datum

    def read_float(self) -> float:
        """
        A float is written as 4 bytes.
        The float is converted into a 32-bit integer using a method equivalent to
        Java's floatToRawIntBits and then encoded in little-endian format.
        """
        return float(STRUCT_FLOAT.unpack(self.read(4))[0])

    def read_double(self) -> float:
        """
        A double is written as 8 bytes.
        The double is converted into a 64-bit integer using a method equivalent to
        Java's doubleToRawLongBits and then encoded in little-endian format.
        """
        return float(STRUCT_DOUBLE.unpack(self.read(8))[0])

    def read_decimal_from_bytes(self, precision: int, scale: int) -> decimal.Decimal:
        """
        Decimal bytes are decoded as signed short, int or long depending on the
        size of bytes.
        """
        size = self.read_long()
        return self.read_decimal_from_fixed(precision, scale, size)

    def read_decimal_from_fixed(self, precision: int, scale: int, size: int) -> decimal.Decimal:
        """
        Decimal is encoded as fixed. Fixed instances are encoded using the
        number of bytes declared in the schema.
        """
        datum = self.read(size)
        unscaled_datum = 0
        msb = struct.unpack("!b", datum[0:1])[0]
        leftmost_bit = (msb >> 7) & 1
        if leftmost_bit == 1:
            modified_first_byte = ord(datum[0:1]) ^ (1 << 7)
            datum = bytearray([modified_first_byte]) + datum[1:]
            for offset in range(size):
                unscaled_datum <<= 8
                unscaled_datum += ord(datum[offset : 1 + offset])
            unscaled_datum += pow(-2, (size * 8) - 1)
        else:
            for offset in range(size):
                unscaled_datum <<= 8
                unscaled_datum += ord(datum[offset : 1 + offset])

        original_prec = decimal.getcontext().prec
        try:
            decimal.getcontext().prec = precision
            scaled_datum = decimal.Decimal(unscaled_datum).scaleb(-scale)
        finally:
            decimal.getcontext().prec = original_prec
        return scaled_datum

    def read_bytes(self) -> bytes:
        """
        Bytes are encoded as a long followed by that many bytes of data.
        """
        return self.read(self.read_long())

    def read_utf8(self) -> str:
        """
        A string is encoded as a long followed by
        that many bytes of UTF-8 encoded character data.
        """
        return self.read_bytes().decode("utf-8")

    def read_date_from_int(self) -> datetime.date:
        """
        int is decoded as python date object.
        int stores the number of days from
        the unix epoch, 1 January 1970 (ISO calendar).
        """
        days_since_epoch = self.read_int()
        return datetime.date(1970, 1, 1) + datetime.timedelta(days_since_epoch)

    def _build_time_object(self, value: int, scale_to_micro: int) -> datetime.time:
        value = value * scale_to_micro
        value, microseconds = divmod(value, 1000000)
        value, seconds = divmod(value, 60)
        value, minutes = divmod(value, 60)
        hours = value

        return datetime.time(hour=hours, minute=minutes, second=seconds, microsecond=microseconds)

    def read_time_millis_from_int(self) -> datetime.time:
        """
        int is decoded as python time object which represents
        the number of milliseconds after midnight, 00:00:00.000.
        """
        milliseconds = self.read_int()
        return self._build_time_object(milliseconds, 1000)

    def read_time_micros_from_long(self) -> datetime.time:
        """
        long is decoded as python time object which represents
        the number of microseconds after midnight, 00:00:00.000000.
        """
        microseconds = self.read_long()
        return self._build_time_object(microseconds, 1)

    def read_timestamp_millis_from_long(self) -> datetime.datetime:
        """
        long is decoded as python datetime object which represents
        the number of milliseconds from the unix epoch, 1 January 1970.
        """
        timestamp_millis = self.read_long()
        timedelta = datetime.timedelta(microseconds=timestamp_millis * 1000)
        unix_epoch_datetime = datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=avro.timezones.utc)
        return unix_epoch_datetime + timedelta

    def read_timestamp_micros_from_long(self) -> datetime.datetime:
        """
        long is decoded as python datetime object which represents
        the number of microseconds from the unix epoch, 1 January 1970.
        """
        timestamp_micros = self.read_long()
        timedelta = datetime.timedelta(microseconds=timestamp_micros)
        unix_epoch_datetime = datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=avro.timezones.utc)
        return unix_epoch_datetime + timedelta

    def skip_null(self) -> None:
        pass

    def skip_boolean(self) -> None:
        self.skip(1)

    def skip_int(self) -> None:
        self.skip_long()

    def skip_long(self) -> None:
        b = ord(self.read(1))
        while (b & 0x80) != 0:
            b = ord(self.read(1))

    def skip_float(self) -> None:
        self.skip(4)

    def skip_double(self) -> None:
        self.skip(8)

    def skip_bytes(self) -> None:
        self.skip(self.read_long())

    def skip_utf8(self) -> None:
        self.skip_bytes()

    def skip(self, n: int) -> None:
        self.reader.seek(self.reader.tell() + n)


class BinaryEncoder:
    """Write leaf values."""

    _writer: IO[bytes]

    def __init__(self, writer: IO[bytes]) -> None:
        """
        writer is a Python object on which we can call write.
        """
        self._writer = writer

    @property
    def writer(self) -> IO[bytes]:
        return self._writer

    def write(self, datum: bytes) -> None:
        """Write an arbitrary datum."""
        self.writer.write(datum)

    def write_null(self, datum: None) -> None:
        """
        null is written as zero bytes
        """

    def write_boolean(self, datum: bool) -> None:
        """
        a boolean is written as a single byte
        whose value is either 0 (false) or 1 (true).
        """
        self.write(bytearray([bool(datum)]))

    def write_int(self, datum: int) -> None:
        """
        int and long values are written using variable-length, zig-zag coding.
        """
        self.write_long(datum)

    def write_long(self, datum: int) -> None:
        """
        int and long values are written using variable-length, zig-zag coding.
        """
        datum = (datum << 1) ^ (datum >> 63)
        while (datum & ~0x7F) != 0:
            self.write(bytearray([(datum & 0x7F) | 0x80]))
            datum >>= 7
        self.write(bytearray([datum]))

    def write_float(self, datum: float) -> None:
        """
        A float is written as 4 bytes.
        The float is converted into a 32-bit integer using a method equivalent to
        Java's floatToRawIntBits and then encoded in little-endian format.
        """
        self.write(STRUCT_FLOAT.pack(datum))

    def write_double(self, datum: float) -> None:
        """
        A double is written as 8 bytes.
        The double is converted into a 64-bit integer using a method equivalent to
        Java's doubleToRawLongBits and then encoded in little-endian format.
        """
        self.write(STRUCT_DOUBLE.pack(datum))

    def write_decimal_bytes(self, datum: decimal.Decimal, scale: int) -> None:
        """
        Decimal in bytes are encoded as long. Since size of packed value in bytes for
        signed long is 8, 8 bytes are written.
        """
        sign, digits, exp = datum.as_tuple()
        if (-1 * int(exp)) > scale:
            raise avro.errors.AvroOutOfScaleException(scale, datum, exp)

        unscaled_datum = 0
        for digit in digits:
            unscaled_datum = (unscaled_datum * 10) + digit

        bits_req = unscaled_datum.bit_length() + 1
        if sign:
            unscaled_datum = (1 << bits_req) - unscaled_datum

        bytes_req = bits_req // 8
        padding_bits = ~((1 << bits_req) - 1) if sign else 0
        packed_bits = padding_bits | unscaled_datum

        bytes_req += 1 if (bytes_req << 3) < bits_req else 0
        self.write_long(bytes_req)
        for index in range(bytes_req - 1, -1, -1):
            bits_to_write = packed_bits >> (8 * index)
            self.write(bytearray([bits_to_write & 0xFF]))

    def write_decimal_fixed(self, datum: decimal.Decimal, scale: int, size: int) -> None:
        """
        Decimal in fixed are encoded as size of fixed bytes.
        """
        sign, digits, exp = datum.as_tuple()
        if (-1 * int(exp)) > scale:
            raise avro.errors.AvroOutOfScaleException(scale, datum, exp)

        unscaled_datum = 0
        for digit in digits:
            unscaled_datum = (unscaled_datum * 10) + digit

        bits_req = unscaled_datum.bit_length() + 1
        size_in_bits = size * 8
        offset_bits = size_in_bits - bits_req

        mask = 2**size_in_bits - 1
        bit = 1
        for i in range(bits_req):
            mask ^= bit
            bit <<= 1

        if bits_req < 8:
            bytes_req = 1
        else:
            bytes_req = bits_req // 8
            if bits_req % 8 != 0:
                bytes_req += 1
        if sign:
            unscaled_datum = (1 << bits_req) - unscaled_datum
            unscaled_datum = mask | unscaled_datum
            for index in range(size - 1, -1, -1):
                bits_to_write = unscaled_datum >> (8 * index)
                self.write(bytearray([bits_to_write & 0xFF]))
        else:
            for i in range(offset_bits // 8):
                self.write(b"\x00")
            for index in range(bytes_req - 1, -1, -1):
                bits_to_write = unscaled_datum >> (8 * index)
                self.write(bytearray([bits_to_write & 0xFF]))

    def write_bytes(self, datum: bytes) -> None:
        """
        Bytes are encoded as a long followed by that many bytes of data.
        """
        self.write_long(len(datum))
        self.write(struct.pack(f"{len(datum)}s", datum))

    def write_utf8(self, datum: str) -> None:
        """
        A string is encoded as a long followed by
        that many bytes of UTF-8 encoded character data.
        """
        self.write_bytes(datum.encode("utf-8"))

    def write_date_int(self, datum: datetime.date) -> None:
        """
        Encode python date object as int.
        It stores the number of days from
        the unix epoch, 1 January 1970 (ISO calendar).
        """
        delta_date = datum - datetime.date(1970, 1, 1)
        self.write_int(delta_date.days)

    def write_time_millis_int(self, datum: datetime.time) -> None:
        """
        Encode python time object as int.
        It stores the number of milliseconds from midnight, 00:00:00.000
        """
        milliseconds = datum.hour * 3600000 + datum.minute * 60000 + datum.second * 1000 + datum.microsecond // 1000
        self.write_int(milliseconds)

    def write_time_micros_long(self, datum: datetime.time) -> None:
        """
        Encode python time object as long.
        It stores the number of microseconds from midnight, 00:00:00.000000
        """
        microseconds = datum.hour * 3600000000 + datum.minute * 60000000 + datum.second * 1000000 + datum.microsecond
        self.write_long(microseconds)

    def _timedelta_total_microseconds(self, timedelta_: datetime.timedelta) -> int:
        return timedelta_.microseconds + (timedelta_.seconds + timedelta_.days * 24 * 3600) * 10**6

    def write_timestamp_millis_long(self, datum: datetime.datetime) -> None:
        """
        Encode python datetime object as long.
        It stores the number of milliseconds from midnight of unix epoch, 1 January 1970.
        """
        datum = datum.astimezone(tz=avro.timezones.utc)
        timedelta = datum - datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=avro.timezones.utc)
        milliseconds = self._timedelta_total_microseconds(timedelta) // 1000
        self.write_long(milliseconds)

    def write_timestamp_micros_long(self, datum: datetime.datetime) -> None:
        """
        Encode python datetime object as long.
        It stores the number of microseconds from midnight of unix epoch, 1 January 1970.
        """
        datum = datum.astimezone(tz=avro.timezones.utc)
        timedelta = datum - datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=avro.timezones.utc)
        microseconds = self._timedelta_total_microseconds(timedelta)
        self.write_long(microseconds)


#
# DatumReader/Writer
#
class DatumReader:
    """Deserialize Avro-encoded data into a Python data structure."""

    _writers_schema: Optional[avro.schema.Schema]
    _readers_schema: Optional[avro.schema.Schema]

    def __init__(self, writers_schema: Optional[avro.schema.Schema] = None, readers_schema: Optional[avro.schema.Schema] = None) -> None:
        """
        As defined in the Avro specification, we call the schema encoded
        in the data the "writer's schema", and the schema expected by the
        reader the "reader's schema".
        """
        self._writers_schema = writers_schema
        self._readers_schema = readers_schema

    @property
    def writers_schema(self) -> Optional[avro.schema.Schema]:
        return self._writers_schema

    @writers_schema.setter
    def writers_schema(self, writers_schema: avro.schema.Schema) -> None:
        self._writers_schema = writers_schema

    @property
    def readers_schema(self) -> Optional[avro.schema.Schema]:
        return self._readers_schema

    @readers_schema.setter
    def readers_schema(self, readers_schema: avro.schema.Schema) -> None:
        self._readers_schema = readers_schema

    def read(self, decoder: "BinaryDecoder") -> object:
        if self.writers_schema is None:
            raise avro.errors.IONotReadyException("Cannot read without a writer's schema.")
        if self.readers_schema is None:
            self.readers_schema = self.writers_schema
        return self.read_data(self.writers_schema, self.readers_schema, decoder)

    def read_data(self, writers_schema: avro.schema.Schema, readers_schema: avro.schema.Schema, decoder: "BinaryDecoder") -> object:
        # schema matching
        if not readers_schema.match(writers_schema):
            raise avro.errors.SchemaResolutionException("Schemas do not match.", writers_schema, readers_schema)

        logical_type = getattr(writers_schema, "logical_type", None)

        # function dispatch for reading data based on type of writer's schema
        if isinstance(writers_schema, avro.schema.UnionSchema) and isinstance(readers_schema, avro.schema.UnionSchema):
            return self.read_union(writers_schema, readers_schema, decoder)

        if isinstance(readers_schema, avro.schema.UnionSchema):
            # schema resolution: reader's schema is a union, writer's schema is not
            for s in readers_schema.schemas:
                if s.match(writers_schema):
                    return self.read_data(writers_schema, s, decoder)

            # This shouldn't happen because of the match check at the start of this method.
            raise avro.errors.SchemaResolutionException("Schemas do not match.", writers_schema, readers_schema)

        if writers_schema.type == "null":
            return None
        if writers_schema.type == "boolean":
            return decoder.read_boolean()
        if writers_schema.type == "string":
            return decoder.read_utf8()
        if writers_schema.type == "int":
            if logical_type == avro.constants.DATE:
                return decoder.read_date_from_int()
            if logical_type == avro.constants.TIME_MILLIS:
                return decoder.read_time_millis_from_int()
            return decoder.read_int()
        if writers_schema.type == "long":
            if logical_type == avro.constants.TIME_MICROS:
                return decoder.read_time_micros_from_long()
            if logical_type == avro.constants.TIMESTAMP_MILLIS:
                return decoder.read_timestamp_millis_from_long()
            if logical_type == avro.constants.TIMESTAMP_MICROS:
                return decoder.read_timestamp_micros_from_long()
            return decoder.read_long()
        if writers_schema.type == "float":
            return decoder.read_float()
        if writers_schema.type == "double":
            return decoder.read_double()
        if writers_schema.type == "bytes":
            if logical_type == "decimal":
                precision = writers_schema.get_prop("precision")
                if not (isinstance(precision, int) and precision > 0):
                    warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal precision {precision}. Must be a positive integer."))
                    return decoder.read_bytes()
                scale = writers_schema.get_prop("scale")
                if not (isinstance(scale, int) and scale >= 0):
                    warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal scale {scale}. Must be a non-negative integer."))
                    return decoder.read_bytes()
                return decoder.read_decimal_from_bytes(precision, scale)
            return decoder.read_bytes()
        if isinstance(writers_schema, avro.schema.FixedSchema) and isinstance(readers_schema, avro.schema.FixedSchema):
            if logical_type == "decimal":
                precision = writers_schema.get_prop("precision")
                if not (isinstance(precision, int) and precision > 0):
                    warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal precision {precision}. Must be a positive integer."))
                    return self.read_fixed(writers_schema, readers_schema, decoder)
                scale = writers_schema.get_prop("scale")
                if not (isinstance(scale, int) and scale >= 0):
                    warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal scale {scale}. Must be a non-negative integer."))
                    return self.read_fixed(writers_schema, readers_schema, decoder)
                return decoder.read_decimal_from_fixed(precision, scale, writers_schema.size)
            return self.read_fixed(writers_schema, readers_schema, decoder)
        if isinstance(writers_schema, avro.schema.EnumSchema) and isinstance(readers_schema, avro.schema.EnumSchema):
            return self.read_enum(writers_schema, readers_schema, decoder)
        if isinstance(writers_schema, avro.schema.ArraySchema) and isinstance(readers_schema, avro.schema.ArraySchema):
            return self.read_array(writers_schema, readers_schema, decoder)
        if isinstance(writers_schema, avro.schema.MapSchema) and isinstance(readers_schema, avro.schema.MapSchema):
            return self.read_map(writers_schema, readers_schema, decoder)
        if isinstance(writers_schema, avro.schema.RecordSchema) and isinstance(readers_schema, avro.schema.RecordSchema):
            # .type in ["record", "error", "request"]:
            return self.read_record(writers_schema, readers_schema, decoder)
        raise avro.errors.AvroException(f"Cannot read unknown schema type: {writers_schema.type}")

    def skip_data(self, writers_schema: avro.schema.Schema, decoder: BinaryDecoder) -> None:
        if writers_schema.type == "null":
            return decoder.skip_null()
        if writers_schema.type == "boolean":
            return decoder.skip_boolean()
        if writers_schema.type == "string":
            return decoder.skip_utf8()
        if writers_schema.type == "int":
            return decoder.skip_int()
        if writers_schema.type == "long":
            return decoder.skip_long()
        if writers_schema.type == "float":
            return decoder.skip_float()
        if writers_schema.type == "double":
            return decoder.skip_double()
        if writers_schema.type == "bytes":
            return decoder.skip_bytes()
        if isinstance(writers_schema, avro.schema.FixedSchema):
            return self.skip_fixed(writers_schema, decoder)
        if isinstance(writers_schema, avro.schema.EnumSchema):
            return self.skip_enum(writers_schema, decoder)
        if isinstance(writers_schema, avro.schema.ArraySchema):
            return self.skip_array(writers_schema, decoder)
        if isinstance(writers_schema, avro.schema.MapSchema):
            return self.skip_map(writers_schema, decoder)
        if isinstance(writers_schema, avro.schema.UnionSchema):
            return self.skip_union(writers_schema, decoder)
        if isinstance(writers_schema, avro.schema.RecordSchema):
            return self.skip_record(writers_schema, decoder)
        raise avro.errors.AvroException(f"Unknown schema type: {writers_schema.type}")

    def read_fixed(self, writers_schema: avro.schema.FixedSchema, readers_schema: avro.schema.Schema, decoder: BinaryDecoder) -> bytes:
        """
        Fixed instances are encoded using the number of bytes declared
        in the schema.
        """
        return decoder.read(writers_schema.size)

    def skip_fixed(self, writers_schema: avro.schema.FixedSchema, decoder: BinaryDecoder) -> None:
        return decoder.skip(writers_schema.size)

    def read_enum(self, writers_schema: avro.schema.EnumSchema, readers_schema: avro.schema.EnumSchema, decoder: BinaryDecoder) -> str:
        """
        An enum is encoded by a int, representing the zero-based position
        of the symbol in the schema.
        """
        # read data
        index_of_symbol = decoder.read_int()
        if index_of_symbol >= len(writers_schema.symbols):
            raise avro.errors.SchemaResolutionException(
                f"Can't access enum index {index_of_symbol} for enum with {len(writers_schema.symbols)} symbols", writers_schema, readers_schema
            )
        read_symbol = writers_schema.symbols[index_of_symbol]

        # schema resolution
        if read_symbol not in readers_schema.symbols:
            raise avro.errors.SchemaResolutionException(f"Symbol {read_symbol} not present in Reader's Schema", writers_schema, readers_schema)

        return read_symbol

    def skip_enum(self, writers_schema: avro.schema.EnumSchema, decoder: BinaryDecoder) -> None:
        return decoder.skip_int()

    def read_array(self, writers_schema: avro.schema.ArraySchema, readers_schema: avro.schema.ArraySchema, decoder: BinaryDecoder) -> List[object]:
        """
        Arrays are encoded as a series of blocks.

        Each block consists of a long count value,
        followed by that many array items.
        A block with count zero indicates the end of the array.
        Each item is encoded per the array's item schema.

        If a block's count is negative,
        then the count is followed immediately by a long block size,
        indicating the number of bytes in the block.
        The actual count in this case
        is the absolute value of the count written.
        """
        read_items = []
        block_count = decoder.read_long()
        while block_count != 0:
            if block_count < 0:
                block_count = -block_count
                decoder.skip_long()
            for i in range(block_count):
                read_items.append(self.read_data(writers_schema.items, readers_schema.items, decoder))
            block_count = decoder.read_long()
        return read_items

    def skip_array(self, writers_schema: avro.schema.ArraySchema, decoder: BinaryDecoder) -> None:
        block_count = decoder.read_long()
        while block_count != 0:
            if block_count < 0:
                block_size = decoder.read_long()
                decoder.skip(block_size)
            else:
                for i in range(block_count):
                    self.skip_data(writers_schema.items, decoder)
            block_count = decoder.read_long()

    def read_map(self, writers_schema: avro.schema.MapSchema, readers_schema: avro.schema.MapSchema, decoder: BinaryDecoder) -> Mapping[str, object]:
        """
        Maps are encoded as a series of blocks.

        Each block consists of a long count value,
        followed by that many key/value pairs.
        A block with count zero indicates the end of the map.
        Each item is encoded per the map's value schema.

        If a block's count is negative,
        then the count is followed immediately by a long block size,
        indicating the number of bytes in the block.
        The actual count in this case
        is the absolute value of the count written.
        """
        read_items = {}
        block_count = decoder.read_long()
        while block_count != 0:
            if block_count < 0:
                block_count = -block_count
                decoder.skip_long()
            for i in range(block_count):
                key = decoder.read_utf8()
                read_items[key] = self.read_data(writers_schema.values, readers_schema.values, decoder)
            block_count = decoder.read_long()
        return read_items

    def skip_map(self, writers_schema: avro.schema.MapSchema, decoder: BinaryDecoder) -> None:
        block_count = decoder.read_long()
        while block_count != 0:
            if block_count < 0:
                block_size = decoder.read_long()
                decoder.skip(block_size)
            else:
                for i in range(block_count):
                    decoder.skip_utf8()
                    self.skip_data(writers_schema.values, decoder)
            block_count = decoder.read_long()

    def read_union(self, writers_schema: avro.schema.UnionSchema, readers_schema: avro.schema.UnionSchema, decoder: BinaryDecoder) -> object:
        """
        A union is encoded by first writing an int value indicating
        the zero-based position within the union of the schema of its value.
        The value is then encoded per the indicated schema within the union.
        """
        # schema resolution
        index_of_schema = int(decoder.read_long())
        if index_of_schema >= len(writers_schema.schemas):
            raise avro.errors.SchemaResolutionException(
                f"Can't access branch index {index_of_schema} for union with {len(writers_schema.schemas)} branches", writers_schema, readers_schema
            )
        selected_writers_schema = writers_schema.schemas[index_of_schema]

        # read data
        return self.read_data(selected_writers_schema, readers_schema, decoder)

    def skip_union(self, writers_schema: avro.schema.UnionSchema, decoder: BinaryDecoder) -> None:
        index_of_schema = int(decoder.read_long())
        if index_of_schema >= len(writers_schema.schemas):
            raise avro.errors.SchemaResolutionException(
                f"Can't access branch index {index_of_schema} for union with {len(writers_schema.schemas)} branches", writers_schema
            )
        return self.skip_data(writers_schema.schemas[index_of_schema], decoder)

    def read_record(
        self, writers_schema: avro.schema.RecordSchema, readers_schema: avro.schema.RecordSchema, decoder: BinaryDecoder
    ) -> Mapping[str, object]:
        """
        A record is encoded by encoding the values of its fields
        in the order that they are declared. In other words, a record
        is encoded as just the concatenation of the encodings of its fields.
        Field values are encoded per their schema.

        Schema Resolution:
         * the ordering of fields may be different: fields are matched by name.
         * schemas for fields with the same name in both records are resolved
           recursively.
         * if the writer's record contains a field with a name not present in the
           reader's record, the writer's value for that field is ignored.
         * if the reader's record schema has a field that contains a default value,
           and writer's schema does not have a field with the same name, then the
           reader should use the default value from its field.
         * if the reader's record schema has a field with no default value, and
           writer's schema does not have a field with the same name, then the
           field's value is unset.
        """
        # schema resolution
        readers_fields_dict = readers_schema.fields_dict
        read_record = {}
        for field in writers_schema.fields:
            readers_field = readers_fields_dict.get(field.name)
            if readers_field is not None:
                field_val = self.read_data(field.type, readers_field.type, decoder)
                read_record[field.name] = field_val
            else:
                self.skip_data(field.type, decoder)

        # fill in default values
        if len(readers_fields_dict) > len(read_record):
            writers_fields_dict = writers_schema.fields_dict
            for field_name, field in readers_fields_dict.items():
                if field_name not in writers_fields_dict:
                    if not field.has_default:
                        raise avro.errors.SchemaResolutionException(f"No default value for field {field_name}", writers_schema, readers_schema)
                    field_val = self._read_default_value(field.type, field.default)
                    read_record[field.name] = field_val
        return read_record

    def skip_record(self, writers_schema: avro.schema.RecordSchema, decoder: BinaryDecoder) -> None:
        for field in writers_schema.fields:
            self.skip_data(field.type, decoder)

    def _read_default_value(self, field_schema: avro.schema.Schema, default_value: object) -> object:
        """
        Basically a JSON Decoder?
        """
        if field_schema.type == "null":
            if default_value is None:
                return None
            raise avro.errors.InvalidDefaultException(field_schema, default_value)
        if field_schema.type == "boolean":
            return bool(default_value)
        if field_schema.type in ("int", "long"):
            if isinstance(default_value, int):
                return default_value
            raise avro.errors.InvalidDefaultException(field_schema, default_value)
        if field_schema.type in ("float", "double"):
            if isinstance(default_value, float):
                return default_value
            raise avro.errors.InvalidDefaultException(field_schema, default_value)
        if field_schema.type in ("bytes", "fixed"):
            if isinstance(default_value, bytes):
                return default_value
            if isinstance(default_value, str):
                return default_value.encode()
            raise avro.errors.InvalidDefaultException(field_schema, default_value)
        if field_schema.type in ("enum", "string"):
            if isinstance(default_value, str):
                return default_value
            raise avro.errors.InvalidDefaultException(field_schema, default_value)
        if isinstance(field_schema, avro.schema.ArraySchema):
            if isinstance(default_value, Iterable):
                return [self._read_default_value(field_schema.items, json_val) for json_val in default_value]
            raise avro.errors.InvalidDefaultException(field_schema, default_value)
        if isinstance(field_schema, avro.schema.MapSchema):
            if isinstance(default_value, Mapping):
                return {key: self._read_default_value(field_schema.values, json_val) for key, json_val in default_value.items()}
            raise avro.errors.InvalidDefaultException(field_schema, default_value)
        if isinstance(field_schema, avro.schema.UnionSchema):
            return self._read_default_value(field_schema.schemas[0], default_value)
        if isinstance(field_schema, avro.schema.RecordSchema):
            if not isinstance(default_value, Mapping):
                raise avro.errors.InvalidDefaultException(field_schema, default_value)
            read_record = {}
            for field in field_schema.fields:
                json_val = default_value.get(field.name)
                if json_val is None:
                    json_val = field.default
                field_val = self._read_default_value(field.type, json_val)
                read_record[field.name] = field_val
            return read_record
        raise avro.errors.AvroException(f"Unknown type: {field_schema.type}")


class DatumWriter:
    """DatumWriter for generic python objects."""

    _writers_schema: Optional[avro.schema.Schema]

    def __init__(self, writers_schema: Optional[avro.schema.Schema] = None) -> None:
        self._writers_schema = writers_schema

    @property
    def writers_schema(self) -> Optional[avro.schema.Schema]:
        return self._writers_schema

    @writers_schema.setter
    def writers_schema(self, writers_schema: avro.schema.Schema) -> None:
        self._writers_schema = writers_schema

    def write(self, datum: object, encoder: BinaryEncoder) -> None:
        if self.writers_schema is None:
            raise avro.errors.IONotReadyException("Cannot write without a writer's schema.")
        validate(self.writers_schema, datum, raise_on_error=True)
        self.write_data(self.writers_schema, datum, encoder)

    def write_data(self, writers_schema: avro.schema.Schema, datum: object, encoder: BinaryEncoder) -> None:
        # function dispatch to write datum
        logical_type = getattr(writers_schema, "logical_type", None)
        if writers_schema.type == "null":
            if datum is None:
                return encoder.write_null(datum)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if writers_schema.type == "boolean":
            if isinstance(datum, bool):
                return encoder.write_boolean(datum)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if writers_schema.type == "string":
            if isinstance(datum, str):
                return encoder.write_utf8(datum)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if writers_schema.type == "int":
            if logical_type == avro.constants.DATE:
                if isinstance(datum, datetime.date):
                    return encoder.write_date_int(datum)
                warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a date type"))
            elif logical_type == avro.constants.TIME_MILLIS:
                if isinstance(datum, datetime.time):
                    return encoder.write_time_millis_int(datum)
                warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a time type"))
            if isinstance(datum, int):
                return encoder.write_int(datum)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if writers_schema.type == "long":
            if logical_type == avro.constants.TIME_MICROS:
                if isinstance(datum, datetime.time):
                    return encoder.write_time_micros_long(datum)
                warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a time type"))
            elif logical_type == avro.constants.TIMESTAMP_MILLIS:
                if isinstance(datum, datetime.datetime):
                    return encoder.write_timestamp_millis_long(datum)
                warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a datetime type"))
            elif logical_type == avro.constants.TIMESTAMP_MICROS:
                if isinstance(datum, datetime.datetime):
                    return encoder.write_timestamp_micros_long(datum)
                warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a datetime type"))
            if isinstance(datum, int):
                return encoder.write_long(datum)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if writers_schema.type == "float":
            if isinstance(datum, (int, float)):
                return encoder.write_float(datum)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if writers_schema.type == "double":
            if isinstance(datum, (int, float)):
                return encoder.write_double(datum)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if writers_schema.type == "bytes":
            if logical_type == "decimal":
                scale = writers_schema.get_prop("scale")
                if not (isinstance(scale, int) and scale >= 0):
                    warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal scale {scale}. Must be a non-negative integer."))
                elif not isinstance(datum, decimal.Decimal):
                    warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a decimal type"))
                else:
                    return encoder.write_decimal_bytes(datum, scale)
            if isinstance(datum, bytes):
                return encoder.write_bytes(datum)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if isinstance(writers_schema, avro.schema.FixedSchema):
            if logical_type == "decimal":
                scale = writers_schema.get_prop("scale")
                size = writers_schema.size
                if not (isinstance(scale, int) and scale >= 0):
                    warnings.warn(avro.errors.IgnoredLogicalType(f"Invalid decimal scale {scale}. Must be a non-negative integer."))
                elif not isinstance(datum, decimal.Decimal):
                    warnings.warn(avro.errors.IgnoredLogicalType(f"{datum} is not a decimal type"))
                else:
                    return encoder.write_decimal_fixed(datum, scale, size)
            if isinstance(datum, bytes):
                return self.write_fixed(writers_schema, datum, encoder)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if isinstance(writers_schema, avro.schema.EnumSchema):
            if isinstance(datum, str):
                return self.write_enum(writers_schema, datum, encoder)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if isinstance(writers_schema, avro.schema.ArraySchema):
            if isinstance(datum, Sequence):
                return self.write_array(writers_schema, datum, encoder)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if isinstance(writers_schema, avro.schema.MapSchema):
            if isinstance(datum, Mapping):
                return self.write_map(writers_schema, datum, encoder)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        if isinstance(writers_schema, avro.schema.UnionSchema):
            return self.write_union(writers_schema, datum, encoder)
        if isinstance(writers_schema, avro.schema.RecordSchema):
            if isinstance(datum, Mapping):
                return self.write_record(writers_schema, datum, encoder)
            raise avro.errors.AvroTypeException(writers_schema, datum)
        raise avro.errors.AvroException(f"Unknown type: {writers_schema.type}")

    def write_fixed(self, writers_schema: avro.schema.FixedSchema, datum: bytes, encoder: BinaryEncoder) -> None:
        """
        Fixed instances are encoded using the number of bytes declared
        in the schema.
        """
        return encoder.write(datum)

    def write_enum(self, writers_schema: avro.schema.EnumSchema, datum: str, encoder: BinaryEncoder) -> None:
        """
        An enum is encoded by a int, representing the zero-based position
        of the symbol in the schema.
        """
        index_of_datum = writers_schema.symbols.index(datum)
        return encoder.write_int(index_of_datum)

    def write_array(self, writers_schema: avro.schema.ArraySchema, datum: Sequence[object], encoder: BinaryEncoder) -> None:
        """
        Arrays are encoded as a series of blocks.

        Each block consists of a long count value,
        followed by that many array items.
        A block with count zero indicates the end of the array.
        Each item is encoded per the array's item schema.

        If a block's count is negative,
        then the count is followed immediately by a long block size,
        indicating the number of bytes in the block.
        The actual count in this case
        is the absolute value of the count written.
        """
        if len(datum) > 0:
            encoder.write_long(len(datum))
            for item in datum:
                self.write_data(writers_schema.items, item, encoder)
        return encoder.write_long(0)

    def write_map(self, writers_schema: avro.schema.MapSchema, datum: Mapping[str, object], encoder: BinaryEncoder) -> None:
        """
        Maps are encoded as a series of blocks.

        Each block consists of a long count value,
        followed by that many key/value pairs.
        A block with count zero indicates the end of the map.
        Each item is encoded per the map's value schema.

        If a block's count is negative,
        then the count is followed immediately by a long block size,
        indicating the number of bytes in the block.
        The actual count in this case
        is the absolute value of the count written.
        """
        if len(datum) > 0:
            encoder.write_long(len(datum))
            for key, val in datum.items():
                encoder.write_utf8(key)
                self.write_data(writers_schema.values, val, encoder)
        return encoder.write_long(0)

    def write_union(self, writers_schema: avro.schema.UnionSchema, datum: object, encoder: BinaryEncoder) -> None:
        """
        A union is encoded by first writing an int value indicating
        the zero-based position within the union of the schema of its value.
        The value is then encoded per the indicated schema within the union.
        """
        # resolve union
        index_of_schema = -1
        for i, candidate_schema in enumerate(writers_schema.schemas):
            if validate(candidate_schema, datum):
                index_of_schema = i
        if index_of_schema < 0:
            raise avro.errors.AvroTypeException(writers_schema, datum)

        # write data
        encoder.write_long(index_of_schema)
        return self.write_data(writers_schema.schemas[index_of_schema], datum, encoder)

    def write_record(self, writers_schema: avro.schema.RecordSchema, datum: Mapping[str, object], encoder: BinaryEncoder) -> None:
        """
        A record is encoded by encoding the values of its fields
        in the order that they are declared. In other words, a record
        is encoded as just the concatenation of the encodings of its fields.
        Field values are encoded per their schema.
        """
        for field in writers_schema.fields:
            self.write_data(field.type, datum.get(field.name), encoder)