1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
---
jupytext:
text_representation:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.16.1
kernelspec:
display_name: Python 3 (ipykernel)
language: python
name: python3
---
# What is an "Awkward" Array?
```{code-cell} ipython3
import numpy as np
import awkward as ak
```
## Versatile Arrays
Awkward Arrays are general tree-like data structures, like JSON, but contiguous in memory and operated upon with compiled, vectorized code like NumPy.
They look like NumPy arrays:
```{code-cell} ipython3
ak.Array([1, 2, 3])
```
Like NumPy, they can have multiple dimensions:
```{code-cell} ipython3
ak.Array([
[1, 2, 3],
[4, 5, 6]
])
```
These dimensions can have varying lengths; arrays can be [ragged](https://en.wikipedia.org/wiki/Jagged_array):
```{code-cell} ipython3
ak.Array([
[1, 2, 3],
[4],
[5, 6]
])
```
Each dimension can contain missing values:
```{code-cell} ipython3
ak.Array([
[1, 2, 3],
[4],
[5, 6, None]
])
```
Awkward Arrays can store _numbers_:
```{code-cell} ipython3
ak.Array([
[3, 141],
[59, 26, 535],
[8]
])
```
They can also work with _dates_:
```{code-cell} ipython3
ak.Array(
[
[np.datetime64("1815-12-10"), np.datetime64("1969-07-16")],
[np.datetime64("1564-04-26")],
]
)
```
They can even work with _strings_:
```{code-cell} ipython3
ak.Array(
[
[
"Benjamin List",
"David MacMillan",
],
[
"Emmanuelle Charpentier",
"Jennifer A. Doudna",
],
]
)
```
Awkward Arrays can have structure through _records_:
```{code-cell} ipython3
ak.Array(
[
[
{"name": "Benjamin List", "age": 53},
{"name": "David MacMillan", "age": 53},
],
[
{"name": "Emmanuelle Charpentier", "age": 52},
{"name": "Jennifer A. Doudna", "age": 57},
],
[
{"name": "Akira Yoshino", "age": 73},
{"name": "M. Stanley Whittingham", "age": 79},
{"name": "John B. Goodenough", "age": 98},
],
]
)
```
In fact, Awkward Arrays can represent many kinds of jagged data. They can possess complex structures that mix records, and primitive types.
```{code-cell} ipython3
ak.Array(
[
[
{
"name": "Benjamin List",
"age": 53,
"institutions": [
"University of Cologne",
"Max Planck Institute for Coal Research",
"Hokkaido University",
],
},
{
"name": "David MacMillan",
"age": 53,
"institutions": None,
},
]
]
)
```
They can even contain unions!
```{code-cell} ipython3
ak.Array(
[
[np.datetime64("1815-12-10"), "Cassini"],
[np.datetime64("1564-04-26")],
]
)
```
## NumPy-like interface
Awkward Array _looks like_ NumPy. It behaves identically to NumPy for regular arrays
```{code-cell} ipython3
x = ak.Array([
[1, 2, 3],
[4, 5, 6]
]);
```
```{code-cell} ipython3
ak.sum(x, axis=-1)
```
providing a similar high-level API, and implementing the [ufunc](https://numpy.org/doc/stable/reference/ufuncs.html) mechanism:
```{code-cell} ipython3
powers_of_two = ak.Array(
[
[1, 2, 4],
[None, 8],
[16],
]
);
```
```{code-cell} ipython3
ak.sum(powers_of_two)
```
But generalises to the tricky kinds of data that NumPy struggles to work with. It can perform reductions through varying length lists:

```{code-cell} ipython3
ak.sum(powers_of_two, axis=0)
```
## Lightweight structures
Awkward makes it east to pull apart record structures:
```{code-cell} ipython3
nobel_prize_winner = ak.Array(
[
[
{"name": "Benjamin List", "age": 53},
{"name": "David MacMillan", "age": 53},
],
[
{"name": "Emmanuelle Charpentier", "age": 52},
{"name": "Jennifer A. Doudna", "age": 57},
],
[
{"name": "Akira Yoshino", "age": 73},
{"name": "M. Stanley Whittingham", "age": 79},
{"name": "John B. Goodenough", "age": 98},
],
]
);
```
```{code-cell} ipython3
nobel_prize_winner.name
```
```{code-cell} ipython3
nobel_prize_winner.age
```
These records are lightweight, and simple to compose:
```{code-cell} ipython3
nobel_prize_winner_with_birth_year = ak.zip({
"name": nobel_prize_winner.name,
"age": nobel_prize_winner.age,
"birth_year": 2021 - nobel_prize_winner.age
});
```
```{code-cell} ipython3
nobel_prize_winner_with_birth_year.show()
```
## High performance
Like NumPy, Awkward Array performs computations in fast, optimised kernels.
```{code-cell} ipython3
large_array = ak.Array([[1, 2, 3], [], [4, 5]] * 1_000_000)
```
We can compute the sum in `3.37 ms ± 107 µs` on a reference CPU:
```{code-cell} ipython3
ak.sum(large_array)
```
The same sum can be computed with pure-Python over the flattened array in `369 ms ± 8.07 ms`:
```{code-cell} ipython3
large_flat_array = ak.ravel(large_array)
sum(large_flat_array)
```
These performance values are not benchmarks; they are only an indication of the speed of Awkward Array.
Some problems are hard to solve with array-oriented programming. Awkward Array supports [Numba](https://numba.pydata.org/) out of the box:
```{code-cell} ipython3
import numba as nb
@nb.njit
def cumulative_sum(arr):
result = 0
for x in arr:
for y in x:
result += y
return result
cumulative_sum(large_array)
```
|