File: how-to-convert-arrow.md

package info (click to toggle)
python-awkward 2.6.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 23,088 kB
  • sloc: python: 148,689; cpp: 33,562; sh: 432; makefile: 21; javascript: 8
file content (295 lines) | stat: -rw-r--r-- 8,335 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
---
jupytext:
  text_representation:
    extension: .md
    format_name: myst
    format_version: 0.13
    jupytext_version: 1.14.1
kernelspec:
  display_name: Python 3 (ipykernel)
  language: python
  name: python3
---

How to convert to/from Arrow and Parquet
========================================

The [Apache Arrow](https://arrow.apache.org/) data format is very similar to Awkward Array's, but they're not exactly the same. As such, arrays can _usually_ be shared without copying, but not always.

The [Apache Parquet](https://parquet.apache.org/) file format has strong connections to Arrow with a large overlap in available tools, and while it's also a columnar format like Awkward and Arrow, it is implemented in a different way, which emphasizes compact storage over random access.

```{code-cell} ipython3
import awkward as ak
import pyarrow as pa
import pyarrow.csv
import urllib.request
```

From Arrow to Awkward
---------------------

The function for Arrow → Awkward conversion is {func}`ak.from_arrow`.

The argument to this function can be any of the following types from the pyarrow library:

   * {class}`pyarrow.lib.Array`
   * {class}`pyarrow.lib.ChunkedArray`
   * {class}`pyarrow.lib.RecordBatch`
   * {class}`pyarrow.lib.Table`

and they are converted into non-partitioned, non-virtual Awkward Arrays. (Any disjoint chunks in the Arrow array are concatenated.)

```{code-cell} ipython3
pa_array = pa.array([[1.1, 2.2, 3.3], [], [4.4, 5.5]])
pa_array
```

```{code-cell} ipython3
ak.from_arrow(pa_array)
```

Here is an example of an Arrow Table, derived from CSV. (Printing a table shows its field types.)

```{code-cell} ipython3
pokemon = urllib.request.urlopen(
    "https://gist.githubusercontent.com/armgilles/194bcff35001e7eb53a2a8b441e8b2c6/raw/92200bc0a673d5ce2110aaad4544ed6c4010f687/pokemon.csv"
)
table = pyarrow.csv.read_csv(pokemon)
table
```

Awkward Array doesn't make a deep distinction between "arrays" and "tables" the way Arrow does: the Awkward equivalent of an Arrow table is just an Awkward Array of record type.

```{code-cell} ipython3
array = ak.from_arrow(table)
array
```

The Awkward equivalent of Arrow's schemas is {func}`ak.type`.

```{code-cell} ipython3
ak.type(array)
```

```{code-cell} ipython3
ak.to_list(array[0])
```

This array is ready for data analysis.

```{code-cell} ipython3
array[array.Legendary].Attack - array[array.Legendary].Defense
```

From Awkward to Arrow
---------------------

The function for Awkward → Arrow conversion is {func}`ak.to_arrow`. This function always returns

   * {class}`pyarrow.lib.Array`

type.

```{code-cell} ipython3
ak_array = ak.Array(
    [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}]
)
ak_array
```

```{code-cell} ipython3
pa_array = ak.to_arrow(ak_array)
pa_array
```

```{code-cell} ipython3
type(pa_array)
```

```{code-cell} ipython3
isinstance(pa_array, pa.lib.Array)
```

If you need {class}`pyarrow.lib.RecordBatch`, you can build this using pyarrow:

```{code-cell} ipython3
pa_batch = pa.RecordBatch.from_arrays(
    [
        ak.to_arrow(ak_array.x),
        ak.to_arrow(ak_array.y),
    ],
    ["x", "y"],
)
pa_batch
```

If you need {class}`pyarrow.lib.Table`, you can build this using pyarrow:

```{code-cell} ipython3
pa_table = pa.Table.from_batches([pa_batch])
pa_table
```

The columns of this Table are {class}`pa.lib.ChunkedArray` instances:

```{code-cell} ipython3
pa_table[0]
```

```{code-cell} ipython3
pa_table[1]
```

shares memory as much as is possible, which [can be faster than constructing Pandas directly](https://ursalabs.org/blog/fast-pandas-loading/).

+++ {"tags": []}

Reading/writing data streams and random access files
----------------------------------------------------

Arrow has several methods for interfacing to data streams and disk-bound files, [see the official documentation](https://arrow.apache.org/docs/python/ipc.html) for instructions.

When following those instructions, remember that {func}`ak.from_arrow` can accept {class}`pyarrow.lib.Array`, {class}`pyarrow.lib.ChunkedArray`, {class}`pyarrow.lib.RecordBatch`, and {class}`pyarrow.lib.Table`, but {func}`ak.to_arrow` _only returns {class}`pyarrow.lib.Array`_.

For instance, when writing to an IPC stream, Arrow requires {class}`pyarrow.lib.RecordBatch`, so you need to build them:

```{code-cell} ipython3
ak_array = ak.Array(
    [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}]
)
ak_array
```

```{code-cell} ipython3
first_batch = pa.RecordBatch.from_arrays(
    [
        ak.to_arrow(ak_array.x),
        ak.to_arrow(ak_array.y),
    ],
    ["x", "y"],
)
first_batch.schema
```

```{code-cell} ipython3
sink = pa.BufferOutputStream()
writer = pa.ipc.new_stream(sink, first_batch.schema)

writer.write_batch(first_batch)

for i in range(5):
    next_batch = pa.RecordBatch.from_arrays(
        [
            ak.to_arrow(ak_array.x),
            ak.to_arrow(ak_array.y),
        ],
        ["x", "y"],
    )

    writer.write_batch(next_batch)

writer.close()
```

```{code-cell} ipython3
bytes(sink.getvalue())
```

But when reading them back, we can just pass the record batches (yielded by the {class}`pyarrow.lib.RecordBatchStreamReader` `reader`) to {func}`ak.from_arrow`:

```{code-cell} ipython3
reader = pa.ipc.open_stream(sink.getvalue())
reader.schema
```

```{code-cell} ipython3
for batch in reader:
    print(repr(ak.from_arrow(batch)))
```

Reading/writing the Feather file format
---------------------------------------

Feather is a lightweight file format that puts Arrow Tables in disk-bound files, [see the official documentation](https://arrow.apache.org/docs/python/feather.html) for instructions.

When following those instructions, remember that {func}`ak.from_arrow` can accept {class}`pyarrow.lib.Table`, but {func}`ak.to_arrow` _only returns {class}`pyarrow.lib.Array`_.

For instance, when writing to a Feather file, Arrow requires {class}`pyarrow.lib.Table`, so you need to build them:

```{code-cell} ipython3
ak_array = ak.Array(
    [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}]
)
ak_array
```

```{code-cell} ipython3
pa_batch = pa.RecordBatch.from_arrays(
    [
        ak.to_arrow(ak_array.x),
        ak.to_arrow(ak_array.y),
    ],
    ["x", "y"],
)

pa_table = pa.Table.from_batches([pa_batch])
pa_table
```

```{code-cell} ipython3
import pyarrow.feather

pyarrow.feather.write_feather(pa_table, "/tmp/example.feather")
```

But when reading them back, we can just pass the Arrow Table to {func}`ak.from_arrow`.

```{code-cell} ipython3
from_feather = pyarrow.feather.read_table("/tmp/example.feather")
from_feather
```

```{code-cell} ipython3
type(from_feather)
```

```{code-cell} ipython3
ak.from_arrow(from_feather)
```

Reading/writing the Parquet file format
---------------------------------------

With data converted to and from Arrow, it can then be saved and loaded from Parquet files. [Arrow's official Parquet documentation](https://arrow.apache.org/docs/python/parquet.html) provides instructions for converting Arrow to and from Parquet, but Parquet is a sufficiently important file format that Awkward has specialized functions for it.

The {func}`ak.to_parquet` function writes Awkward Arrays as Parquet files. It has relatively few options.

```{code-cell} ipython3
ak_array = ak.Array(
    [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}]
)
ak_array
```

```{code-cell} ipython3
ak.to_parquet(ak_array, "/tmp/example.parquet")
```

The {func}`ak.from_parquet` function reads Parquet files as Awkward Arrays, with quite a few more options. Basic usage just gives you the Awkward Array back.

```{code-cell} ipython3
ak.from_parquet("/tmp/example.parquet")
```

Since the data in a Parquet file may be huge, there are `columns` and `row_groups` options to read back only _part_ of the file.

   * Parquet's "columns" correspond to Awkward's record "fields," though Parquet columns cannot be nested.
   * Parquet's "row groups" are ranges of contiguous elements, such as "`1000-2000`". They correspond to Awkward's "partitioning." Neither Parquet row groups nor Awkward partitions can be nested.

For instance, the expression

```{code-cell} ipython3
ak.from_parquet("/tmp/example.parquet", columns=["x"])
```

Doesn't read column `"y"`.