File: how-to-convert-pandas.md

package info (click to toggle)
python-awkward 2.6.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 23,088 kB
  • sloc: python: 148,689; cpp: 33,562; sh: 432; makefile: 21; javascript: 8
file content (234 lines) | stat: -rw-r--r-- 7,182 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
jupytext:
  text_representation:
    extension: .md
    format_name: myst
    format_version: 0.13
    jupytext_version: 1.14.1
kernelspec:
  display_name: Python 3 (ipykernel)
  language: python
  name: python3
---

How to convert to Pandas
========================

[Pandas](https://pandas.pydata.org/) is a data analysis library for ordered time-series and relational data. In general, Pandas does not define operations for manipulating nested data structures, but in some cases, [MultiIndex/advanced indexing](https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html) can do equivalent things.

```{code-cell} ipython3
import awkward as ak
import pandas as pd
import pyarrow as pa
import urllib.request
```

From Pandas to Awkward
----------------------

At the time of writing, there is no `ak.from_dataframe` function, but such a thing could be useful.

However, [Apache Arrow](https://arrow.apache.org/) can be converted to and from Awkward Arrays, and Arrow can be converted to and from Pandas (sometimes zero-copy). See below for more on conversion through Arrow.

+++

From Awkward to Pandas
----------------------

The function for Awkward → Pandas conversion is {func}`ak.to_dataframe`.

```{code-cell} ipython3
ak_array = ak.Array(
    [
        {"x": 1.1, "y": 1, "z": "one"},
        {"x": 2.2, "y": 2, "z": "two"},
        {"x": 3.3, "y": 3, "z": "three"},
        {"x": 4.4, "y": 4, "z": "four"},
        {"x": 5.5, "y": 5, "z": "five"},
    ]
)
ak_array
```

```{code-cell} ipython3
ak.to_dataframe(ak_array)
```

Awkward record field names are converted into Pandas column names, even if nested within lists.

```{code-cell} ipython3
ak_array = ak.Array(
    [
        [
            {"x": 1.1, "y": 1, "z": "one"},
            {"x": 2.2, "y": 2, "z": "two"},
            {"x": 3.3, "y": 3, "z": "three"},
        ],
        [],
        [{"x": 4.4, "y": 4, "z": "four"}, {"x": 5.5, "y": 5, "z": "five"}],
    ]
)
ak_array
```

```{code-cell} ipython3
ak.to_dataframe(ak_array)
```

In this case, we see that the `"x"`, `"y"`, and `"z"` fields are separate columns, but also that the index is now hierarchical, a [MultiIndex](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html). Nested lists become MultiIndex rows and nested records become MultiIndex columns.

Here is an example with three levels of depth:

```{code-cell} ipython3
ak_array = ak.Array(
    [
        [[1.1, 2.2], [], [3.3]],
        [],
        [[4.4], [5.5, 6.6]],
        [[7.7]],
        [[8.8]],
    ]
)
ak_array
```

```{code-cell} ipython3
ak.to_dataframe(ak_array)
```

And here is an example with nested records/hierarchical columns:

```{code-cell} ipython3
ak_array = ak.Array(
    [
        {"I": {"a": _, "b": {"i": _}}, "II": {"x": {"y": {"z": _}}}}
        for _ in range(0, 50, 10)
    ]
)
ak_array
```

```{code-cell} ipython3
ak.to_dataframe(ak_array)
```

Although nested lists and records can be represented using Pandas's MultiIndex, different-length lists in the same data structure can only be translated without loss into multiple DataFrames. This is because a DataFrame can have only one MultiIndex, but lists of different lengths require different MultiIndexes.

```{code-cell} ipython3
ak_array = ak.Array(
    [
        {"x": [], "y": [4.4, 3.3, 2.2, 1.1]},
        {"x": [1], "y": [3.3, 2.2, 1.1]},
        {"x": [1, 2], "y": [2.2, 1.1]},
        {"x": [1, 2, 3], "y": [1.1]},
        {"x": [1, 2, 3, 4], "y": []},
    ]
)
ak_array
```

To avoid losing any data, {func}`ak.to_dataframe` can be used with `how=None` (the default is `how="inner"`) to return a _list_ of the minimum number of DataFrames needed to encode the data.

In `how=None` mode, {func}`ak.to_dataframe` always returns a list (sometimes with only one item).

```{code-cell} ipython3
ak.to_dataframe(ak_array, how=None)
```

The default `how="inner"` combines the above into a single DataFrame using [pd.merge](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html). This operation is lossy.

```{code-cell} ipython3
ak.to_dataframe(ak_array, how="inner")
```

The value of `how` is passed to [pd.merge](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html), so outer joins are possible as well.

```{code-cell} ipython3
ak.to_dataframe(ak_array, how="outer")
```

Conversion through Apache Arrow
-------------------------------

Since [Apache Arrow](https://arrow.apache.org/) can be converted to and from Awkward Arrays and Pandas, Arrow can connect Awkward and Pandas in both directions. This is an alternative to {func}`ak.to_pandas` (described above) with different behavior.

As described in the tutorial on Arrow, the {func}`ak.to_arrow` function returns a {class}`pyarrow.lib.Arrow` object. Arrow's conversion to Pandas requires a {class}`pyarrow.lib.Table`.

```{code-cell} ipython3
ak_array = ak.Array(
    [
        [
            {"x": 1.1, "y": 1, "z": "one"},
            {"x": 2.2, "y": 2, "z": "two"},
            {"x": 3.3, "y": 3, "z": "three"},
        ],
        [],
        [{"x": 4.4, "y": 4, "z": "four"}, {"x": 5.5, "y": 5, "z": "five"}],
    ]
)
ak_array
```

```{code-cell} ipython3
pa_array = ak.to_arrow(ak_array)
pa_array
```

We can build a Table manually, ensuring that we set `extensionarray=False`. The `extensionarray` flag is normally `True`, and enables Awkward to preserve metadata through Arrow transformations. However, tools like Arrow's Pandas conversion do not recognise Awkward's special extension type, so we must take care to provide Arrow with native types:

```{code-cell} ipython3
pa_table = pa.Table.from_batches(
    [
        pa.RecordBatch.from_arrays(
            [
                ak.to_arrow(ak_array.x, extensionarray=False),
                ak.to_arrow(ak_array.y, extensionarray=False),
                ak.to_arrow(ak_array.z, extensionarray=False),
            ],
            ["x", "y", "z"],
        )
    ]
)
pa_table
```

```{code-cell} ipython3
pa_table.to_pandas()
```

Note that this is different from the output of {func}`ak.to_pandas`:

```{code-cell} ipython3
ak.to_dataframe(ak_array)
```

The Awkward → Arrow → Pandas route leaves the lists as nested data within each cell, whereas {func}`ak.to_dataframe` encodes the nested structure with a [MultiIndex/advanced indexing](https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html) and puts simple values in each cell. Depending on your needs, one or the other may be desirable.

Finally, the Pandas → Arrow → Awkward is currently the only means of turning Pandas DataFrames into Awkward Arrays.

```{code-cell} ipython3
pokemon = urllib.request.urlopen(
    "https://gist.githubusercontent.com/armgilles/194bcff35001e7eb53a2a8b441e8b2c6/raw/92200bc0a673d5ce2110aaad4544ed6c4010f687/pokemon.csv"
)
df = pd.read_csv(pokemon)
df
```

```{code-cell} ipython3
ak_array = ak.from_arrow(pa.Table.from_pandas(df))
ak_array
```

```{code-cell} ipython3
ak.type(ak_array)
```

```{code-cell} ipython3
ak.to_list(ak_array[0])
```

This array is ready for data analysis.

```{code-cell} ipython3
ak_array[ak_array.Legendary].Attack - ak_array[ak_array.Legendary].Defense
```