File: how-to-create-constructors.md

package info (click to toggle)
python-awkward 2.6.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 23,088 kB
  • sloc: python: 148,689; cpp: 33,562; sh: 432; makefile: 21; javascript: 8
file content (952 lines) | stat: -rw-r--r-- 36,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
---
jupytext:
  text_representation:
    extension: .md
    format_name: myst
    format_version: 0.13
    jupytext_version: 1.14.0
kernelspec:
  display_name: Python 3 (ipykernel)
  language: python
  name: python3
---

Direct constructors (fastest)
=============================

If you're willing to think about your data in a columnar way, directly constructing layouts and wrapping them in {class}`ak.Array` interfaces is the fastest way to make them. (All other methods do this at some level.)

"Thinking about data in a columnar way" is the crucial difference between this method and [using ArrayBuilder](how-to-create-arraybuilder.md). The builder method lets you think about a data structure the way you would think about Python objects, in which all fields of a given record or elements of a list are "together" and one record or list is "separate" from another record or list. For example,

```{code-cell} ipython3
import awkward as ak
import numpy as np
```

```{code-cell} ipython3
builder = ak.ArrayBuilder()

with builder.list():
    with builder.record():
        builder.field("x").real(1.1)
        with builder.field("y").list():
            builder.integer(1)
    with builder.record():
        builder.field("x").real(2.2)
        with builder.field("y").list():
            builder.integer(1)
            builder.integer(2)
    with builder.record():
        builder.field("x").real(3.3)
        with builder.field("y").list():
            builder.integer(1)
            builder.integer(2)
            builder.integer(3)

with builder.list():
    pass

with builder.list():
    with builder.record():
        builder.field("x").real(4.4)
        with builder.field("y").list():
            builder.integer(3)
            builder.integer(2)

    with builder.record():
        builder.field("x").real(5.5)
        with builder.field("y").list():
            builder.integer(3)

array = builder.snapshot()
array
```

```{code-cell} ipython3
array.to_list()
```

gets all of the items in the first list separately from the items in the second or third lists, and both fields of each record (_x_ and _y_) are expressed near each other in the flow of the code and in the times when they're appended.

By contrast, the physical data are laid out in columns, with all _x_ values next to each other, regardless of which records or lists they're in, and all the _y_ values next to each other in another buffer.

```{code-cell} ipython3
array.layout
```

To build arrays using the layout constructors, you need to be able to write them in a form similar to the above, with the data already arranged as columns, in a tree representing the _type structure_ of items in the array, not separate trees for each array element.

+++

![](../image/example-hierarchy.svg)

+++

The Awkward Array library has a closed set of node types. Building the array structure you want will require you to understand the node types that you use.

The node types (with validity rules for each) are documented under {class}`ak.contents.Content`, but this tutorial will walk through them explaining the situations in which you'd want to use each.

+++

Content classes
---------------

{class}`ak.contents.Content` is the _abstract_ superclass of all node types. All Content nodes that you would create are concrete subclasses of this class. The superclass is useful for checking `isinstance(some_object, ak.contents.Content)`, since there are some attributes that are only allowed to be Content nodes.

Sections in this document about a subclass of Content are named "`Content >: XYZ`" (using the "[is superclass of](https://stackoverflow.com/q/7759361/1623645)" operator).

+++

Parameters
----------

Each layout node can have arbitrary metadata[^foot], called "parameters." Some parameters have built-in meanings, which are described below, and others can be given meanings by defining functions in {data}`ak.behavior`.

[^foot]: Except for `ak.contents.EmptyArray`, which is an identity type.

+++

Index classes
-------------

{class}`ak.index.Index` instances are buffers of integers that are used to give structure to an array. For instance, the `offsets` in the ListOffsetArrays, above, are Indexes, but the NumpyArray of _y_ list contents are not. {class}`ak.contents.NumpyArray` is a subclass of {class}`ak.contents.Content`, and {class}`ak.index.Index` is not. Indexes are more restricted than general NumPy arrays (must be one-dimensional, C-contiguous integers; dtypes are also prescribed) because they are frequently manipulated by Awkward Array operations, such as slicing.

There are five Index specializations, and each {class}`ak.contents.Content` subclass has limitations on which ones it can use.

   * **Index8:** an Index of signed 8-bit integers
   * **IndexU8:** an Index of unsigned 8-bit integers
   * **Index32:** an Index of signed 32-bit integers
   * **IndexU32:** an Index of unsigned 32-bit integers
   * **Index64:** an Index of signed 64-bit integers

+++

Content >: EmptyArray
---------------------

{class}`ak.contents.EmptyArray` is one of the two possible leaf types of a layout tree; the other is {class}`ak.contents.NumpyArray` (A third, corner-case "leaf type" is a {class}`ak.contents.RecordArray` with zero fields).

EmptyArray is a trivial node type: it can only represent empty arrays with unknown type. It is an identity — when merging an array against an empty array, the empty array has no effect upon the result type. As such, this node cannot have user-defined parameters; {attr}`ak.contents.EmptyArray.parameters` is always empty.

```{code-cell} ipython3
ak.contents.EmptyArray()
```

```{code-cell} ipython3
ak.Array(ak.contents.EmptyArray())
```

Content >: NumpyArray
---------------------

{class}`ak.contents.NumpyArray` is one of the two possible leaf types of a layout tree; the other is {class}`ak.contents.EmptyArray`. (A third, corner-case "leaf type" is a {class}`ak.contents.RecordArray` with zero fields)

NumpyArray represents data the same way as a NumPy [np.ndarray](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html). That is, it can be multidimensional, but only rectilinear arrays.

```{code-cell} ipython3
ak.contents.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5]))
```

```{code-cell} ipython3
ak.contents.NumpyArray(np.array([[1, 2, 3], [4, 5, 6]], np.int16))
```

```{code-cell} ipython3
ak.contents.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5])[::2])
```

```{code-cell} ipython3
ak.contents.NumpyArray(np.array([[1, 2, 3], [4, 5, 6]], np.int16)[:, 1:])
```

In most array structures, the NumpyArrays only need to be 1-dimensional, since regular-length dimensions can be represented by {class}`ak.contents.RegularArray` and variable-length dimensions can be represented by {class}`ak.contents.ListArray` or {class}`ak.contents.ListOffsetArray`.

The {class}`ak.from_numpy` function has a `regulararray` argument to choose between putting multiple dimensions into the NumpyArray node or nesting a 1-dimensional NumpyArray in RegularArray nodes.

```{code-cell} ipython3
ak.from_numpy(
    np.array([[1, 2, 3], [4, 5, 6]], np.int16), regulararray=False, highlevel=False
)
```

```{code-cell} ipython3
ak.from_numpy(
    np.array([[1, 2, 3], [4, 5, 6]], np.int16), regulararray=True, highlevel=False
)
```

All of these representations look the same in an {class}`ak.Array` (high-level view).

```{code-cell} ipython3
ak.Array(ak.contents.NumpyArray(np.array([[1, 2, 3], [4, 5, 6]])))
```

```{code-cell} ipython3
ak.Array(
    ak.contents.RegularArray(ak.contents.NumpyArray(np.array([1, 2, 3, 4, 5, 6])), 3)
)
```

If you are _producing_ arrays, you can pick any representation that is convenient. If you are _consuming_ arrays, you need to be aware of the different representations.

Since this is such a simple node type, let's use it to show examples of adding parameters.

```{code-cell} ipython3
ak.Array(
    ak.contents.NumpyArray(
        np.array([[1, 2, 3], [4, 5, 6]]),
        parameters={"name1": "value1", "name2": {"more": ["complex", "value"]}}
    )
)
```

+++

Content >: RegularArray
-----------------------

{class}`ak.contents.RegularArray` represents regular-length lists (lists with all the same length). This was shown above as being equivalent to dimensions in a {class}`ak.contents.NumpyArray`, but it can also contain irregular data.

```{code-cell} ipython3
layout = ak.contents.RegularArray(
    ak.from_iter([1, 2, 3, 4, 5, 6], highlevel=False),
    3,
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

```{code-cell} ipython3
layout = ak.contents.RegularArray(
    ak.from_iter(
        [[], [1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]], highlevel=False
    ),
    3,
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

The data type for a RegularArray is {class}`ak.types.RegularType`, printed above as the "`3 *`" in the type above. (The "`2 *`" describes the length of the array itself, which is always "regular" in the sense that there's only one of them, equal to itself.)

The "`var *`" is the type of variable-length lists, nested inside of the RegularArray.

+++

RegularArray is the first array type that can have unreachable data: the length of its nested content might not evenly divide the RegularArray's regular `size`.

```{code-cell} ipython3
ak.Array(
    ak.contents.RegularArray(
        ak.contents.NumpyArray(np.array([1, 2, 3, 4, 5, 6, 7])),
        3,
    )
)
```

In the high-level array, we only see `[[1, 2, 3], [4, 5, 6]]` and not `7`. Since the 7 items in the nested NumpyArray can't be subdivided into lists of length 3. This `7` exists in the underlying physical data, but in the high-level view, it is as though it did not.

+++

Content >: ListArray
--------------------

{class}`ak.contents.ListArray` and {class}`ak.contents.ListOffsetArray` are the two node types that describe variable-length lists ({class}`ak.types.ListType`, represented in type strings as "`var *`"). {class}`ak.contents.ListArray` is the most general. It takes two Indexes, `starts` and `stops`, which indicate where each nested list starts and stops.

```{code-cell} ipython3
layout = ak.contents.ListArray(
    ak.index.Index64(np.array([0, 3, 3])),
    ak.index.Index64(np.array([3, 3, 5])),
    ak.contents.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5])),
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

The nested content, `[1.1, 2.2, 3.3, 4.4, 5.5]` is divided into three lists, `[1.1, 2.2, 3.3]`, `[]`, `[4.4, 5.5]` by `starts=[0, 3, 3]` and `stops=[3, 3, 5]`. That is to say, the first list is drawn from indexes `0` through `3` of the content, the second is empty (from `3` to `3`), and the third is drawn from indexes `3` through `5`.

+++

Content >: ListOffsetArray
--------------------------

{class}`ak.contents.ListOffsetArray` and {class}`ak.contents.ListArray` are the two node types that describe variable-length lists ({class}`ak.types.ListType`, represented in type strings as "`var *`"). {class}`ak.contents.ListOffsetArray` is an important special case, in which

```python
starts = offsets[:-1]
stops  = offsets[1:]
```

for a single array `offsets`. If we were only representing arrays and not doing computations on them, we would always use ListOffsetArrays, because they are the most compact. Knowing that a node is a ListOffsetArray can also simplify the implementation of some operations. In a sense, operations that produce ListArrays (previous section) can be thought of as delaying the part of the operation that would propagate down into the `content`, as an optimization.

```{code-cell} ipython3
layout = ak.contents.ListOffsetArray(
    ak.index.Index64(np.array([0, 3, 3, 5])),
    ak.contents.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5])),
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

The length of the `offsets` array is one larger than the length of the array itself; an empty array has an `offsets` of length 1.

However, the `offsets` does not need to start at `0` or stop at `len(content)`.

```{code-cell} ipython3
ak.Array(
    ak.contents.ListOffsetArray(
        ak.index.Index64(np.array([1, 3, 3, 4])),
        ak.contents.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5])),
    )
)
```

In the above, `offsets[0] == 1` means that the `1.1` in the `content` is unreachable, and `offsets[-1] == 4` means that the `5.5` is unreachable. Just as in ListArrays, unreachable data in ListOffsetArrays usually comes about because we don't want computations to always propagate all the way down large trees.

+++

Nested lists
------------

As with all non-leaf Content nodes, arbitrarily deep nested lists can be built by nesting RegularArrays, ListArrays, and ListOffsetArrays. In each case, the `starts`, `stops`, or `offsets` only index the next level down in structure.

For example, here is an array of 5 lists, whose length is approximately 20 each.

```{code-cell} ipython3
layout = ak.contents.ListOffsetArray(
    ak.index.Index64(np.array([0, 18, 42, 59, 83, 100])),
    ak.contents.NumpyArray(np.arange(100)),
)
array = ak.Array(layout)
array[0], array[1], array[2], array[3], array[4]
```

Making an array of 3 lists that contains these 5 lists requires us to make indexes that go up to 5, not 100.

```{code-cell} ipython3
array = ak.Array(
    ak.contents.ListOffsetArray(
        ak.index.Index64(np.array([0, 3, 3, 5])),
        layout,
    )
)
array[0], array[1], array[2]
```

Strings and bytestrings
-----------------------

As described above, any Content node can have any parameters, but some have special meanings. Most parameters are intended to associate runtime behaviors with data structures, the way that methods add computational abilities to a class. Unicode strings and raw bytestrings are an example of this.

Awkward Array has no "StringArray" type because such a thing would be stored, sliced, and operated upon in most circumatances as a list-type array (RegularArray, ListArray, ListOffsetArray) of bytes. A parameter named "`__array__`" adds behaviors, such as the string interpretation, to arrays.

   * `"__array__": "byte"` interprets an {class}`ak.contents.NumpyArray` as raw bytes in a bytestring,
   * `"__array__": "char"` interprets an {class}`ak.contents.NumpyArray` as characters in a Unicode-encoded string,
   * `"__array__": "bytestring"` interprets a list-type array ({class}`ak.contents.RegularArray`, {class}`ak.contents.ListArray`, {class}`ak.contents.ListOffsetArray`) as a raw bytestring,
   * `"__array__": "string"` interprets a list-type array ({class}`ak.contents.RegularArray`, {class}`ak.contents.ListArray`, {class}`ak.contents.ListOffsetArray`) as a Unicode-encoded string.

The {class}`ak.contents.NumpyArray` must be directly nested within the list-type array, which can be checked with {func}`ak.is_valid` and {func}`ak.validity_error`.

+++

Here is an example of a raw bytestring:

```{code-cell} ipython3
ak.Array(
    ak.contents.ListOffsetArray(
        ak.index.Index64(np.array([0, 3, 8, 11, 15])),
        ak.contents.NumpyArray(
            np.array(
                [
                    104,
                    101,
                    121,
                    116,
                    104,
                    101,
                    114,
                    101,
                    121,
                    111,
                    117,
                    103,
                    117,
                    121,
                    115,
                ],
                np.uint8,
            ),
            parameters={"__array__": "byte"},
        ),
        parameters={"__array__": "bytestring"},
    )
)
```

And here is an example of a Unicode-encoded string (UTF-8):

```{code-cell} ipython3
ak.Array(
    ak.contents.ListOffsetArray(
        ak.index.Index64(np.array([0, 3, 12, 15, 19])),
        ak.contents.NumpyArray(
            np.array(
                [
                    104,
                    101,
                    121,
                    226,
                    128,
                    148,
                    226,
                    128,
                    148,
                    226,
                    128,
                    148,
                    121,
                    111,
                    117,
                    103,
                    117,
                    121,
                    115,
                ],
                np.uint8,
            ),
            parameters={"__array__": "char"},
        ),
        parameters={"__array__": "string"},
    )
)
```

As with any other lists, strings can be nested within lists. Only the {class}`ak.contents.RegularArray`/{class}`ak.contents.ListArray`/{class}`ak.contents.ListOffsetArray` corresponding to the strings should have the `"__array__": "string"` or `"bytestring"` parameter.

```{code-cell} ipython3
ak.Array(
    ak.contents.ListOffsetArray(
        ak.index.Index64([0, 2, 4]),
        ak.contents.ListOffsetArray(
            ak.index.Index64(np.array([0, 3, 12, 15, 19])),
            ak.contents.NumpyArray(
                np.array(
                    [
                        104,
                        101,
                        121,
                        226,
                        128,
                        148,
                        226,
                        128,
                        148,
                        226,
                        128,
                        148,
                        121,
                        111,
                        117,
                        103,
                        117,
                        121,
                        115,
                    ],
                    np.uint8,
                ),
                parameters={"__array__": "char"},
            ),
            parameters={"__array__": "string"},
        ),
    )
)
```

Content >: RecordArray
----------------------

{class}`ak.contents.RecordArray` and {class}`ak.contents.UnionArray` are the only two node types that have multiple `contents`, not just a single `content` (and the property is pluralized to reflect this fact). RecordArrays represent a "[product type](https://en.wikipedia.org/wiki/Product_type)," data containing records with fields _x_, _y_, and _z_ have _x_'s type AND _y_'s type AND _z_'s type, whereas UnionArrays represent a "[sum type](https://en.wikipedia.org/wiki/Tagged_union)," data that are _x_'s type OR _y_'s type OR _z_'s type.

RecordArrays have no {class}`ak.index.Index`-valued properties; they may be thought of as metadata-only groupings of Content nodes. Since the RecordArray node holds an _array_ for each field, it is a "[struct of arrays](https://en.wikipedia.org/wiki/AoS_and_SoA)," rather than an "array of structs."

+++

RecordArray fields are ordered and provided as an ordered list of `contents` and field names (the `recordlookup`).

```{code-cell} ipython3
layout = ak.contents.RecordArray(
    [
        ak.from_iter([1.1, 2.2, 3.3, 4.4, 5.5], highlevel=False),
        ak.from_iter([[1], [1, 2], [1, 2, 3], [3, 2], [3]], highlevel=False),
    ],
    [
        "x",
        "y",
    ],
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

```{code-cell} ipython3
ak.to_list(layout)
```

RecordArray fields do not need to have names. If the `recordlookup` is `None`, the RecordArray is interpreted as an array of tuples. (The word "tuple," in statically typed environments, usually means a fixed-length type in which each element may be a different type.)

```{code-cell} ipython3
layout = ak.contents.RecordArray(
    [
        ak.from_iter([1.1, 2.2, 3.3, 4.4, 5.5], highlevel=False),
        ak.from_iter([[1], [1, 2], [1, 2, 3], [3, 2], [3]], highlevel=False),
    ],
    None,
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

```{code-cell} ipython3
ak.to_list(layout)
```

Since the RecordArray node holds an array for each of its fields, it is possible for these arrays to have different lengths. In such a case, the length of the RecordArray can be given explicitly or it is taken to be the length of the shortest field-array.

```{code-cell} ipython3
content0 = ak.contents.NumpyArray(np.array([1, 2, 3, 4, 5, 6, 7, 8]))
content1 = ak.contents.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5]))
content2 = ak.from_iter(
    [[1], [1, 2], [1, 2, 3], [3, 2, 1], [3, 2], [3]], highlevel=False
)
print(f"{len(content0) = }, {len(content1) = }, {len(content2) = }")

layout = ak.contents.RecordArray([content0, content1, content2], ["x", "y", "z"])
print(f"{len(layout) = }")
```

```{code-cell} ipython3
layout = ak.contents.RecordArray(
    [content0, content1, content2], ["x", "y", "z"], length=3
)
print(f"{len(layout) = }")
```

RecordArrays are also allowed to have zero fields. This is an unusual case, but it is one that allows a RecordArray to be a leaf node (like {class}`ak.contents.EmptyArray` and {class}`ak.contents.NumpyArray`). If a RecordArray has no fields, a length _must_ be given.

```{code-cell} ipython3
ak.Array(ak.contents.RecordArray([], [], length=5))
```

```{code-cell} ipython3
ak.Array(ak.contents.RecordArray([], None, length=5))
```

Scalar Records
--------------

An {class}`ak.contents.RecordArray` is an _array_ of records. Just as you can extract a scalar number from an array of numbers, you can extract a scalar record. Unlike numbers, records may still be sliced in some ways like Awkward Arrays:

```{code-cell} ipython3
array = ak.Array(
    ak.contents.RecordArray(
        [
            ak.from_iter([1.1, 2.2, 3.3, 4.4, 5.5], highlevel=False),
            ak.from_iter([[1], [1, 2], [1, 2, 3], [3, 2], [3]], highlevel=False),
        ],
        [
            "x",
            "y",
        ],
    )
)
record = array[2]
record
```

```{code-cell} ipython3
record["y", -1]
```

Therefore, we need an {class}`ak.record.Record` type, but this Record is not an array, so it is not a subclass of {class}`ak.contents.Content`.

Due to the columnar orientation of Awkward Array, a RecordArray does not contain Records, a Record contains a RecordArray.

```{code-cell} ipython3
record.layout
```

It can be built by passing a RecordArray as its first argument and the item of interest in its second argument.

```{code-cell} ipython3
layout = ak.record.Record(
    ak.contents.RecordArray(
        [
            ak.from_iter([1.1, 2.2, 3.3, 4.4, 5.5], highlevel=False),
            ak.from_iter([[1], [1, 2], [1, 2, 3], [3, 2], [3]], highlevel=False),
        ],
        [
            "x",
            "y",
        ],
    ),
    2,
)
record = ak.Record(layout)  # note the high-level ak.Record, rather than ak.Array
record
```

Naming record types
-------------------

The records discussed so far are generic. Naming a record not only makes it easier to read type strings, it's also how {data}`ak.behavior` overloads functions and adds methods to records as though they were classes in object-oriented programming.

A name is given to an {class}`ak.contents.RecordArray` node through its "`__record__`" parameter.

```{code-cell} ipython3
layout = ak.contents.RecordArray(
    [
        ak.from_iter([1.1, 2.2, 3.3, 4.4, 5.5], highlevel=False),
        ak.from_iter([[1], [1, 2], [1, 2, 3], [3, 2], [3]], highlevel=False),
    ],
    [
        "x",
        "y",
    ],
    parameters={"__record__": "Special"},
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

```{code-cell} ipython3
ak.type(layout)
```

Behavioral overloads are presented in more depth in {data}`ak.behavior`, but here are three examples:

```{code-cell} ipython3
ak.behavior[np.sqrt, "Special"] = lambda special: np.sqrt(special.x)

np.sqrt(ak.Array(layout))
```

```{code-cell} ipython3
class SpecialRecord(ak.Record):
    def len_y(self):
        return len(self.y)


ak.behavior["Special"] = SpecialRecord

ak.Record(layout[2]).len_y()
```

```{code-cell} ipython3
class SpecialArray(ak.Array):
    def len_y(self):
        return ak.num(self.y)


ak.behavior["*", "Special"] = SpecialArray

ak.Array(layout).len_y()
```

Content >: IndexedArray
-----------------------

{class}`ak.contents.IndexedArray` is the only Content node that has exactly the same type as its `content`. An IndexedArray rearranges the elements of its `content`, as though it were a lazily applied array-slice.

```{code-cell} ipython3
layout = ak.contents.IndexedArray(
    ak.index.Index64(np.array([2, 0, 0, 1, 2])),
    ak.contents.NumpyArray(np.array([0.0, 1.1, 2.2, 3.3])),
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

As such, IndexedArrays can be used to (lazily) remove items, permute items, and/or duplicate items.

IndexedArrays are used as an optimization when performing some operations on {class}`ak.contents.RecordArray`, to avoid propagating them down to every field. This is more relevant for RecordArrays than other nodes because RecordArrays can contain multiple `contents` (and UnionArrays, which also have multiple `contents`, have an `index` to merge an array-slice into).

For example, slicing the following `recordarray` by `[3, 2, 4, 4, 1, 0, 3]` does not affect any of the RecordArray's fields.

```{code-cell} ipython3
recordarray = ak.contents.RecordArray(
    [
        ak.from_iter([1.1, 2.2, 3.3, 4.4, 5.5], highlevel=False),
        ak.from_iter([[1], [1, 2], [1, 2, 3], [3, 2], [3]], highlevel=False),
    ],
    None,
)
recordarray
```

```{code-cell} ipython3
recordarray[[3, 2, 4, 4, 1, 0, 3]]
```

Categorical data
----------------

IndexedArrays, with the `"__array__": "categorical"` parameter, can represent categorical data (sometimes called dictionary-encoding).

```{code-cell} ipython3
layout = ak.contents.IndexedArray(
    ak.index.Index64(np.array([2, 2, 1, 4, 0, 5, 3, 3, 0, 1])),
    ak.from_iter(["zero", "one", "two", "three", "four", "five"], highlevel=False),
    parameters={"__array__": "categorical"},
)
ak.to_list(layout)
```

The above has only one copy of strings from `"zero"` to `"five"`, but they are effectively replicated 10 times in the array.

Any IndexedArray can perform this lazy replication, but labeling it as `"__array__": "categorical"` is a promise that the `content` contains only unique values.

Functions like {func}`ak.to_arrow` and {func}`ak.to_parquet` will project (eagerly evaluate) an IndexedArray that is not labeled as `"__array__": "categorical"` and dictionary-encode an IndexedArray that is. This distinguishes between the use of IndexedArrays as invisible optimizations and intentional, user-visible ones.

+++

Content >: IndexedOptionArray
-----------------------------

{class}`ak.contents.IndexedOptionArray` is the most general of the four nodes that allow for missing data ({class}`ak.contents.IndexedOptionArray`, {class}`ak.contents.ByteMaskedArray`, {class}`ak.contents.BitMaskedArray`, and {class}`ak.contents.UnmaskedArray`). Missing data is also known as "[option type](https://en.wikipedia.org/wiki/Option_type)" (denoted by a question mark `?` or the word `option` in type strings).

{class}`ak.contents.IndexedOptionArray` is an {class}`ak.contents.IndexedArray` in which negative values in the `index` are interpreted as missing. Since it has an `index`, the `content` does not need to have "dummy values" at each index of a missing value. It is therefore more compact for record-type data with many missing values, but {class}`ak.contents.ByteMaskedArray` and especially {class}`ak.contents.BitMaskedArray` are more compact for numerical data or data without many missing values.

```{code-cell} ipython3
layout = ak.contents.IndexedOptionArray(
    ak.index.Index64(np.array([2, -1, 0, -1, -1, 1, 2])),
    ak.contents.NumpyArray(np.array([0.0, 1.1, 2.2, 3.3])),
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

Because of its flexibility, most operations that output potentially missing values use an IndexedOptionArray. {func}`ak.to_packed` and conversions to/from Arrow or Parquet convert it back into a more compact type.

+++

Content >: ByteMaskedArray
--------------------------

{class}`ak.contents.ByteMaskedArray` is the simplest of the four nodes that allow for missing data ({class}`ak.contents.IndexedOptionArray`, {class}`ak.contents.ByteMaskedArray`, {class}`ak.contents.BitMaskedArray`, and {class}`ak.contents.UnmaskedArray`). Missing data is also known as "[option type](https://en.wikipedia.org/wiki/Option_type)" (denoted by a question mark `?` or the word `option` in type strings).

{class}`ak.contents.ByteMaskedArray` is most similar to NumPy's [masked arrays](https://numpy.org/doc/stable/reference/maskedarray.html), except that Awkward ByteMaskedArrays can contain any data type and variable-length structures. The `valid_when` parameter lets you choose whether `True` means an element is valid (not masked/not `None`) or `False` means an element is valid.

```{code-cell} ipython3
layout = ak.contents.ByteMaskedArray(
    ak.index.Index8(np.array([False, False, True, True, False, True, False], np.int8)),
    ak.contents.NumpyArray(np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6])),
    valid_when=False,
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

Content >: BitMaskedArray
-------------------------

{class}`ak.contents.BitMaskedArray` is the most compact of the four nodes that allow for missing data ({class}`ak.contents.IndexedOptionArray`, {class}`ak.contents.ByteMaskedArray`, {class}`ak.contents.BitMaskedArray`, and {class}`ak.contents.UnmaskedArray`). Missing data is also known as "[option type](https://en.wikipedia.org/wiki/Option_type)" (denoted by a question mark `?` or the word `option` in type strings).

{class}`ak.contents.BitMaskedArray` is just like {class}`ak.contents.ByteMaskedArray` except that the booleans are bit-packed. It is motivated primarily by Apache Arrow, which uses bit-packed masks; supporting bit-packed masks in Awkward Array allows us to represent Arrow data directly. Most operations immediately convert BitMaskedArrays into ByteMaskedArrays.

Since bits always come in groups of at least 8, an explicit `length` must be supplied to the constructor. Also, `lsb_order=True` or `False` determines whether the bytes are interpreted [least-significant bit](https://en.wikipedia.org/wiki/Bit_numbering#LSB_0_bit_numbering) first or [most-significant bit](https://en.wikipedia.org/wiki/Bit_numbering#MSB_0_bit_numbering) first, respectively.

```{code-cell} ipython3
layout = ak.contents.BitMaskedArray(
    ak.index.IndexU8(
        np.packbits(np.array([False, False, True, True, False, True, False], np.uint8))
    ),
    ak.contents.NumpyArray(np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6])),
    valid_when=False,
    length=7,
    lsb_order=True,
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

Changing only the `lsb_order` changes the interpretation in important ways!

```{code-cell} ipython3
ak.Array(
    ak.contents.BitMaskedArray(
        layout.mask,
        layout.content,
        layout.valid_when,
        len(layout),
        lsb_order=False,
    )
)
```

Content >: UnmaskedArray
------------------------

{class}`ak.contents.UnmaskedArray` describes formally missing data, but in a case in which no data are actually missing. It is a corner case of the four nodes that allow for missing data ({class}`ak.contents.IndexedOptionArray`, {class}`ak.contents.ByteMaskedArray`, {class}`ak.contents.BitMaskedArray`, and {class}`ak.contents.UnmaskedArray`). Missing data is also known as "[option type](https://en.wikipedia.org/wiki/Option_type)" (denoted by a question mark `?` or the word `option` in type strings).

```{code-cell} ipython3
layout = ak.contents.UnmaskedArray(
    ak.contents.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5]))
)
layout
```

```{code-cell} ipython3
ak.Array(layout)
```

The only distinguishing feature of an UnmaskedArray is the question mark `?` or `option` in its type.

```{code-cell} ipython3
ak.type(layout)
```

Content >: UnionArray
---------------------

{class}`ak.contents.UnionArray` and {class}`ak.contents.RecordArray` are the only two node types that have multiple `contents`, not just a single `content` (and the property is pluralized to reflect this fact). RecordArrays represent a "[product type](https://en.wikipedia.org/wiki/Product_type)," data containing records with fields _x_, _y_, and _z_ have _x_'s type AND _y_'s type AND _z_'s type, whereas UnionArrays represent a "[sum type](https://en.wikipedia.org/wiki/Tagged_union)," data that are _x_'s type OR _y_'s type OR _z_'s type.

In addition, {class}`ak.contents.UnionArray` has two {class}`ak.index.Index`-typed attributes, `tags` and `index`; it is the most complex node type. The `tags` specify which `content` array to draw each array element from, and the `index` specifies which element from that `content`.

The UnionArray element at index `i` is therefore:

```python
contents[tags[i]][index[i]]
```

Although the ability to make arrays with mixed data type is very expressive, not all operations support union type (including iteration in Numba). If you intend to make union-type data for an application, be sure to verify that it will work by generating some test data using {func}`ak.from_iter`.

Awkward Array's UnionArray is equivalent to Apache Arrow's [dense union](https://arrow.apache.org/docs/format/Columnar.html#dense-union). Awkward Array has no counterpart for Apache Arrow's [sparse union](https://arrow.apache.org/docs/format/Columnar.html#sparse-union) (which has no `index`). {func}`ak.from_arrow` generates an `index` on demand when reading sparse union from Arrow.

```{code-cell} ipython3
layout = ak.contents.UnionArray(
    ak.index.Index8(np.array([0, 1, 2, 0, 0, 1, 1, 2, 2, 0], np.int8)),
    ak.index.Index64(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])),
    [
        ak.contents.NumpyArray(
            np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9])
        ),
        ak.from_iter(
            [
                [],
                [1],
                [1, 2],
                [1, 2, 3],
                [1, 2, 3, 4],
                [1, 2, 3, 4, 5],
                [6],
                [6, 7],
                [6, 7, 8],
                [6, 7, 8, 9],
            ],
            highlevel=False,
        ),
        ak.from_iter(
            [
                "zero",
                "one",
                "two",
                "three",
                "four",
                "five",
                "six",
                "seven",
                "eight",
                "nine",
            ],
            highlevel=False,
        ),
    ],
)
layout
```

```{code-cell} ipython3
ak.to_list(layout)
```

The `index` can be used to prevent the need to set up "dummy values" for all contents other than the one specified by a given tag. The above example could thus be more compact with the following (no unreachable data):

```{code-cell} ipython3
layout = ak.contents.UnionArray(
    ak.index.Index8(np.array([0, 1, 2, 0, 0, 1, 1, 2, 2, 0], np.int8)),
    ak.index.Index64(np.array([0, 0, 0, 1, 2, 1, 2, 1, 2, 3])),
    [
        ak.contents.NumpyArray(np.array([0.0, 3.3, 4.4, 9.9])),
        ak.from_iter([[1], [1, 2, 3, 4, 5], [6]], highlevel=False),
        ak.from_iter(["two", "seven", "eight"], highlevel=False),
    ],
)
layout
```

```{code-cell} ipython3
ak.to_list(layout)
```

{func}`ak.from_iter` is by far the easiest way to create UnionArrays for small tests.

+++

Relationship to ak.from_buffers
-------------------------------

The [generic buffers](how-to-convert-buffers) tutorial describes a function, {func}`ak.from_buffers` that builds an array from one-dimensional buffers and an {class}`ak.forms.Form`. Forms describe the complete tree structure of an array without the array data or lengths, and the array data are in the buffers. The {func}`ak.from_buffers` function was designed to operate on data produced by {func}`ak.to_buffers`, but you can also prepare its `form`, `length`, and `buffers` manually.

The {func}`ak.from_buffers` builds arrays using the above constructors, but the interface allows these structures to be built as data, rather than function calls. (Forms have a JSON representation.) If you are always building the same type of array, directly calling the constructors is likely easier. If you're generating different data types programmatically, preparing data for {func}`ak.from_buffers` may be easier than generating and evaluating Python code that call these constructors.

Every {class}`ak.contents.Content` subclass has a corresponding {class}`ak.forms.Form`, and you can see a layout's Form through its `form` property.

```{code-cell} ipython3
array = ak.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]])
array.layout
```

```{code-cell} ipython3
# Abbreviated JSON representation
array.layout.form
```

```{code-cell} ipython3
# Full JSON representation
print(array.layout.form.to_json())
```

In this way, you can figure out how to generate Forms corresponding to the Content nodes you want {func}`ak.from_buffers` to make.