File: how-to-create-records.md

package info (click to toggle)
python-awkward 2.6.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 23,088 kB
  • sloc: python: 148,689; cpp: 33,562; sh: 432; makefile: 21; javascript: 8
file content (417 lines) | stat: -rw-r--r-- 11,587 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
---
jupytext:
  text_representation:
    extension: .md
    format_name: myst
    format_version: 0.13
    jupytext_version: 1.14.1
kernelspec:
  display_name: Python 3 (ipykernel)
  language: python
  name: python3
---

How to create arrays of records
===============================

In Awkward Array, a "record" is a structure containing a fixed-length set of typed, possibly named fields. This is a "struct" in C or an "object" in Python (though the association of executable methods to record types is looser than the binding of methods to classes in object oriented languages).

All methods in Awkward Array are implemented as "[structs of arrays](https://en.wikipedia.org/wiki/AoS_and_SoA)," rather than arrays of structs, so making and breaking records are inexpensive operations that you can perform frequently in data analysis.

```{code-cell} ipython3
import awkward as ak
import numpy as np
```

From a list of Python dicts
---------------------------

Records have a natural representation in JSON and Python as dicts, but only if all dicts in a series have the same set of field names. The {class}`ak.Array` invokes {func}`ak.from_iter` whenever presented with a list (or other non-string, non-dict iterable).

```{code-cell} ipython3
python_dicts = [
    {"x": 1, "y": 1.1, "z": "one"},
    {"x": 2, "y": 2.2, "z": "two"},
    {"x": 3, "y": 3.3, "z": "three"},
    {"x": 4, "y": 4.4, "z": "four"},
    {"x": 5, "y": 5.5, "z": "five"},
]
python_dicts
```

It is important that all of the dicts in the series have the same set of field names, since Awkward Array has to identify all of the records as having a single type:

```{code-cell} ipython3
awkward_array = ak.Array(python_dicts)
awkward_array
```

That is to say, an array of records is not a mapping from one type to another, such as from strings to numbers. The above record has exactly three fields: _x_, _y_, and _z_, and they have fixed types: `int64`, `float64`, and `string`. A mapping could have a variable set of keys, but the value type would have to be uniform.

If you _try_ to mix field types in {func}`ak.from_iter` (ultimately from {class}`ak.ArrayBuilder`), the union of all sets of fields will be assumed, and any that aren't filled in every item will be presumed "missing."

```{code-cell} ipython3
array = ak.Array(
    [
        {"a": 1, "b": 1, "c": 1},
        {"b": 2, "c": 2},
        {"c": 3, "d": 3, "e": 3, "f": 3},
        {"c": 4},
    ]
)
array
```

From a single dict of columns
-----------------------------

If a _single dict_ is passed to {class}`ak.Array`, it will be interpreted as a set of columns, like [Pandas's DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) constructor. This is to provide a familiar interface to Pandas users.

```{code-cell} ipython3
from_columns = ak.Array(
    {
        "x": [1, 2, 3, 4, 5],
        "y": [1.1, 2.2, 3.3, 4.4, 5.5],
        "z": ["one", "two", "three", "four", "five"],
    }
)
from_columns
```

This is _not_ the same as calling {func}`ak.from_iter` on the same input, which could not be a valid {class}`ak.Array` because a single dict would be an {class}`ak.Record`.

```{code-cell} ipython3
from_rows = ak.from_iter(
    {
        "x": [1, 2, 3, 4, 5],
        "y": [1.1, 2.2, 3.3, 4.4, 5.5],
        "z": ["one", "two", "three", "four", "five"],
    }
)
from_rows
```

Using ak.zip
------------

The {func}`ak.zip` function combines columns into an array of records, similar to the Pandas-style constructor described above.

```{code-cell} ipython3
from_columns = ak.zip(
    {
        "x": [1, 2, 3, 4, 5],
        "y": [1.1, 2.2, 3.3, 4.4, 5.5],
        "z": ["one", "two", "three", "four", "five"],
    }
)
from_columns
```

The difference is that {func}`ak.zip` attempts to nested lists deeply, up to a `depth_limit`.

Given columns with nested lists:

```{code-cell} ipython3
zipped = ak.zip(
    {
        "x": ak.Array([[1, 2, 3], [], [4, 5]]),
        "y": ak.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]]),
    }
)
zipped
```

By contrast, the same input to {class}`ak.Array`'s Pandas-style constructor keeps nested lists separate.

```{code-cell} ipython3
not_zipped = ak.Array(
    {
        "x": ak.Array([[1, 2, 3], [], [4, 5]]),
        "y": ak.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]]),
    }
)
not_zipped
```

The difference can be seen in a comparison of their types:

```{code-cell} ipython3
zipped.type.show()
not_zipped.type.show()
```

Also, {func}`ak.zip` can build records without field names, also known as "tuples."

```{code-cell} ipython3
tuples = ak.zip(
    (ak.Array([[1, 2, 3], [], [4, 5]]), ak.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]]))
)
tuples
```

Functions that return lists of pairs, such as {func}`ak.cartesian` and {func}`ak.combinations`, also use the tuple type.

```{code-cell} ipython3
one = ak.Array([[1, 2, 3], [], [4, 5], [6]])
two = ak.Array([["a", "b"], ["c"], ["d"], ["e", "f"]])

ak.cartesian((one, two))
```

```{code-cell} ipython3
ak.combinations(one, 2)
```

Record names
------------

In addition to optional field names, record types can also have names.

```{code-cell} ipython3
ak.Array(
    [
        {"x": 1, "y": 1.1},
        {"x": 2, "y": 2.2},
        {"x": 3, "y": 3.3},
        {"x": 4, "y": 4.4},
        {"x": 5, "y": 5.5},
    ],
    with_name="XYZ",
)
```

```{code-cell} ipython3
ak.zip(
    (ak.Array([[1, 2, 3], [], [4, 5]]), ak.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]])),
    with_name="AB",
)
```

```{code-cell} ipython3
ak.cartesian(
    {"L": ak.Array([1, 2, 3]), "R": ak.Array(["a", "b"])}, with_name="LeftRight", axis=0
)
```

Names are for giving records specialized behavior through the {data}`ak.behavior` registry (see the {data}`ak.behavior` reference documentation for details). These are like attaching methods to a class in the sense that all records with a particular name can be given Python properties and methods.

```{code-cell} ipython3
class XYZRecord(ak.Record):
    def __repr__(self):
        return f"(X={self.x}:Y={self.y})"


class XYZArray(ak.Array):
    def diff(self):
        return abs(self.x - self.y)


ak.behavior["XYZ"] = XYZRecord
ak.behavior["*", "XYZ"] = XYZArray
ak.behavior["__typestr__", "XYZ"] = "XYZ"
ak.behavior[np.sqrt, "XYZ"] = lambda xyz: np.sqrt(xyz.x)

array = ak.Array(
    [
        {"x": 1, "y": 1.1},
        {"x": 2, "y": 2.2},
        {"x": 3, "y": 3.3},
        {"x": 4, "y": 4.4},
        {"x": 5, "y": 5.5},
    ],
    with_name="XYZ",
)
array
```

```{code-cell} ipython3
array.diff()
```

```{code-cell} ipython3
array[0]
```

```{code-cell} ipython3
np.sqrt(array)
```

With ArrayBuilder
-----------------

{class}`ak.ArrayBuilder` is described in more detail [in this tutorial](how-to-create-arraybuilder), but you can also construct arrays of records using the `begin_record`/`end_record` methods or the `record` context manager.

(This is what {func}`ak.from_iter` uses internally to accumulate records.)

```{code-cell} ipython3
builder = ak.ArrayBuilder()

builder.begin_record()
builder.field("x").append(1)
builder.field("y").append(1.1)
builder.end_record()

builder.begin_record()
builder.field("x").append(2)
builder.field("y").append(2.2)
builder.end_record()

builder.begin_record()
builder.field("x").append(3)
builder.field("y").append(3.3)
builder.end_record()

array = builder.snapshot()
array
```

```{code-cell} ipython3
builder = ak.ArrayBuilder()

with builder.record():
    builder.field("x").append(1)
    builder.field("y").append(1.1)

with builder.record():
    builder.field("x").append(2)
    builder.field("y").append(2.2)

with builder.record():
    builder.field("x").append(3)
    builder.field("y").append(3.3)

array = builder.snapshot()
array
```

The `begin_record` method and `record` context manager can take a name, which allows you to name your records on the spot.

```{code-cell} ipython3
builder = ak.ArrayBuilder()

for i in range(3):
    with builder.record("XY"):
        builder.field("x").append(i)
        builder.field("y").append(i * 1.1)

array = builder.snapshot()
array
```

Record names also let you decide between two ways of dealing with changing sets of fields among the input records.

   * The default/generic way: all records at a given level are taken to belong to the same type and some instances of that type are missing fields.
   * Named records: different names mean different types, whether they have the same fields or not. Different record names at the same level result in a union type.

Here is an illustration of that difference.

```{code-cell} ipython3
def fill_A(builder, use_name):
    with builder.record("A" if use_name else None):
        builder.field("x").append(len(builder))
        builder.field("y").append(len(builder) * 1.1)


def fill_B(builder, use_name):
    with builder.record("B" if use_name else None):
        builder.field("y").append(len(builder) * 1.1)
        builder.field("z").append(str(len(builder)))
```

Without names:

```{code-cell} ipython3
builder = ak.ArrayBuilder()

fill_A(builder, use_name=False)
fill_A(builder, use_name=False)

fill_B(builder, use_name=False)
fill_B(builder, use_name=False)

fill_A(builder, use_name=False)

without_names = builder.snapshot()
without_names
```

With names:

```{code-cell} ipython3
builder = ak.ArrayBuilder()

fill_A(builder, use_name=True)
fill_A(builder, use_name=True)

fill_B(builder, use_name=True)
fill_B(builder, use_name=True)

fill_A(builder, use_name=True)

with_names = builder.snapshot()
with_names
```

The difference can be seen in the type: `without_names` has only one record type, but the _x_ and _z_ fields are optional, and `with_names` has a union of two record types, neither of which have optional fields.

```{code-cell} ipython3
without_names.type.show()
```

```{code-cell} ipython3
with_names.type.show()
```

In Numba
--------

Functions that Numba Just-In-Time (JIT) compiles can use {class}`ak.ArrayBuilder` to accumulate records or columns can be accumulated in the compiled part and later combined with {func}`ak.zip`. Combining columns outside of a JIT-compiled function is generally faster.

([At this time](https://numba.pydata.org/numba-doc/dev/reference/pysupported.html#language), Numba can't use context managers, the `with` statement, in fully compiled code. {class}`ak.ArrayBuilder` can't be constructed or converted to an array using `snapshot` inside a JIT-compiled function, but can be outside the compiled context. Similarly, `ak.*` functions like {func}`ak.zip` can't be called inside a JIT-compiled function, but can be outside.)

```{code-cell} ipython3
import numba as nb
```

```{code-cell} ipython3
@nb.jit
def append_record(builder, i):
    builder.begin_record()
    builder.field("x").append(i)
    builder.field("y").append(i * 1.1)
    builder.end_record()


@nb.jit
def example(builder):
    append_record(builder, 1)
    append_record(builder, 2)
    append_record(builder, 3)
    return builder


builder = example(ak.ArrayBuilder())

array = builder.snapshot()
array
```

```{code-cell} ipython3
@nb.jit
def faster_example():
    x = np.empty(3, np.int64)
    y = np.empty(3, np.float64)
    x[0] = 1
    y[0] = 1.1
    x[1] = 2
    y[1] = 2.2
    x[2] = 3
    y[2] = 3.3
    return x, y


array = ak.zip(dict(zip(["x", "y"], faster_example())))
array
```

Combining columns into arrays is a metadata-only operation, which does not scale with the size of the dataset. The second example is faster because it only requires Numba to fill NumPy arrays, which it's designed for, without involving the machinery of {class}`ak.ArrayBuilder` to identify types at runtime.