1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
import jax
import jax.tree_util
import awkward as ak
import numpy as np
from numbers import Integral, Real
jax.config.update("jax_platform_name", "cpu")
jax.config.update("jax_enable_x64", True)
class AuxData(object):
def __init__(self, layout):
self.layout = layout
def __eq__(self, other):
if self.layout is not None:
return self.layout.form == other.layout.form
def find_dataptrs(layout):
def find_nparray_ptrs(node, depth, data_ptrs):
if isinstance(node, ak.layout.NumpyArray):
data_ptrs.append(node.ptr)
data_ptrs = []
ak._util.recursive_walk(layout, find_nparray_ptrs, args=(data_ptrs,))
return data_ptrs
class DifferentiableArray(ak.Array):
def __init__(self, aux_data, tracers):
self.aux_data = aux_data
self.tracers = tracers
if self.aux_data.layout is not None:
self.data_ptrs = find_dataptrs(self.aux_data.layout)
assert len(self.tracers) == len(self.data_ptrs)
self.map_ptrs_to_tracers = dict(zip(self.data_ptrs, self.tracers))
else:
self.data_ptrs = None
self.map_ptrs_to_tracers = None
@property
def layout(self):
return self.aux_data.layout
@layout.setter
def layout(self, layout):
raise ValueError(
"this operation cannot be performed in a JAX-compiled or JAX-differentiated function"
)
def __getitem__(self, where):
if self.layout is None:
raise TypeError("Cannot slice a scalar")
out = self.layout[where]
def find_nparray_node_newptr(layout, outlayout):
outlayout_fieldloc = outlayout.identities.fieldloc
def find_nparray_node(node, depth, fieldloc, shape, nodenum, nodenum_index):
if isinstance(node, ak.layout.NumpyArray):
if node.identities.fieldloc == fieldloc and np.asarray(node.identities).shape[1] == shape[1]:
nodenum_index = nodenum
return
else:
nodenum = nodenum + 1
nodenum_index = -1
ak._util.recursive_walk(layout, find_nparray_node, args=(outlayout_fieldloc, np.asarray(outlayout).shape, 0, nodenum_index))
if nodenum_index == -1:
raise ValueError("Couldn't find the node in new slice")
return nodenum_index
if not isinstance(out, ak.layout.Content):
def recurse(array, recurse_where):
if isinstance(recurse_where, Integral) or isinstance(recurse_where, str):
if isinstance(array.layout, ak.layout.NumpyArray):
if array.layout.ptr in self.map_ptrs_to_tracers:
tracer = self.map_ptrs_to_tracers[array.layout.ptr]
else:
tracer = array.tracers[find_nparray_node_newptr(self.layout, array.layout)]
return tracer[recurse_where]
elif isinstance(where, tuple):
return recurse(array[where[:-1]], where[len(where) - 1])
else:
raise ValueError("Can't slice the array with {0}".format(where))
child = [recurse(self, where)]
aux_data = AuxData(None)
return DifferentiableArray(aux_data, child)
else:
def fetch_indices_and_fieldloc_layout(layout):
if isinstance(layout, ak.layout.NumpyArray):
return [((layout.identities.fieldloc, np.asarray(layout.identities).shape[1]), np.asarray(layout.identities))]
elif isinstance(layout, ak._util.listtypes):
return fetch_indices_and_fieldloc_layout(layout.content)
elif isinstance(layout, ak._util.indexedtypes):
return fetch_indices_and_fieldloc_layout(layout.project())
elif isinstance(layout, ak._util.uniontypes):
raise ValueError("Can't differntiate an UnionArray type {0}".format(layout))
elif isinstance(layout, ak._util.recordtypes):
indices = []
for content in layout.contents:
indices = indices + fetch_indices_and_fieldloc_layout(content)
return indices
elif isinstance(layout, ak._util.indexedtypes):
return fetch_indices_and_fieldloc_layout(layout.content)
elif isinstance(layout, ak._util.indexedoptiontypes):
return fetch_indices_and_fieldloc_layout(layout.content)
elif isinstance(layout, (ak.layout.BitMaskedArray,
ak.layout.ByteMaskedArray,
ak.layout.UnmaskedArray)):
return fetch_indices_and_fieldloc_layout(layout.content)
else:
raise NotImplementedError
def fetch_children_tracer(layout, preslice_identities, children = []):
if isinstance(layout, ak.layout.NumpyArray):
def find_intersection_indices(preslice_identities, postslice_identities):
multiplier = np.append(np.cumprod((np.max(preslice_identities, axis=0) + 1)[::-1])[-2::-1], 1)
haystack = np.sum(preslice_identities * multiplier, axis=1)
needle = np.sum(postslice_identities * multiplier, axis=1)
return np.searchsorted(haystack, needle)
def find_corresponding_identity(postslice_identities, preslice_identities):
for identity in preslice_identities:
if identity[0] == postslice_identities:
return identity[1]
raise ValueError("Couldn't find postslice identities in preslice identities")
if layout.ptr in self.map_ptrs_to_tracers:
tracer = self.map_ptrs_to_tracers[layout.ptr]
indices = find_intersection_indices(find_corresponding_identity((layout.identities.fieldloc, np.asarray(layout.identities).shape[1]), preslice_identities), np.asarray(layout.identities))
children.append(jax.numpy.take(tracer, indices))
return children
else:
tracer = self.tracers[find_nparray_node_newptr(self.layout, layout)]
indices = find_intersection_indices(find_corresponding_identity((layout.identities.fieldloc, np.asarray(layout.identities).shape[1]), preslice_identities), np.asarray(layout.identities))
children.append(jax.numpy.take(tracer, indices))
return children
elif isinstance(layout, ak._util.listtypes):
return fetch_children_tracer(layout.content, preslice_identities)
elif isinstance(layout, ak._util.uniontypes):
raise ValueError("Can't differntiate an UnionArray type {0}".format(layout))
elif isinstance(layout, ak._util.recordtypes):
children = []
for content in layout.contents:
children = children + fetch_children_tracer(content, preslice_identities)
return children
elif isinstance(layout, ak._util.indexedtypes):
return fetch_children_tracer(layout.content, preslice_identities)
elif isinstance(layout, ak._util.indexedoptiontypes):
return fetch_children_tracer(layout.content, preslice_identities)
elif isinstance(layout, (ak.layout.BitMaskedArray,
ak.layout.ByteMaskedArray,
ak.layout.UnmaskedArray)):
return fetch_children_tracer(layout.content, preslice_identities)
else:
raise NotImplementedError("fetch_children_tracer not completely implemented yet for {0}".format(layout))
children = fetch_children_tracer(out, fetch_indices_and_fieldloc_layout(self.aux_data.layout))
out = out.deep_copy()
out.setidentities()
aux_data = AuxData(out)
return DifferentiableArray(aux_data, children)
def __setitem__(self, where, what):
raise ValueError(
"this operation cannot be performed in a JAX-compiled or JAX-differentiated function"
)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
# optional sanity-check (i.e. sanity is optional)
for x in inputs:
if isinstance(x, DifferentiableArray):
if self.layout is not None:
assert x.aux_data == self.aux_data
assert len(x.tracers) == len(self.tracers)
else:
assert x.aux_data.layout == self.aux_data.layout
assert len(x.tracers) == len(self.tracers)
# ak.Array __add__, etc. map to the NumPy functions, switch to JAX
for name, np_ufunc in np.core.umath.__dict__.items():
if ufunc is np_ufunc:
ufunc = getattr(jax.numpy, name)
# need to apply the ufunc to the same argument list for each tracer separately
nexttracers = []
for i in range(len(self.tracers)):
nextinputs = [
x.tracers[i] if isinstance(x, DifferentiableArray) else x
for x in inputs
]
nexttracers.append(getattr(ufunc, method)(*nextinputs, **kwargs))
# and return a new DifferentiableArray (keep it wrapped!)
return DifferentiableArray(self.aux_data, nexttracers)
def special_flatten(array):
if isinstance(array, DifferentiableArray):
aux_data, children = array.aux_data, array.tracers
else:
def create_databuffers(node, depth, databuffers):
if isinstance(node, ak.layout.NumpyArray):
databuffers.append(node)
databuffers = []
ak._util.recursive_walk(array.layout, create_databuffers, args=(databuffers,))
array.layout.setidentities()
aux_data = AuxData(array.layout)
children = [jax.numpy.asarray(x) for x in databuffers]
return children, aux_data
def special_unflatten(aux_data, children):
if any(isinstance(x, jax.core.Tracer) for x in children):
return DifferentiableArray(aux_data, children)
elif all(child is None for child in children):
return None
else:
if aux_data.layout is None:
assert len(children) == 1
return np.ndarray.item(np.asarray(children[0]))
def function(layout, num = 0):
if isinstance(layout, ak.layout.NumpyArray):
num = num + 1
return lambda: ak.layout.NumpyArray(children[num - 1])
arr = ak._util.recursively_apply(aux_data.layout, function, pass_depth=False)
return ak.Array(arr)
jax.tree_util.register_pytree_node(ak.Array, special_flatten, special_unflatten)
jax.tree_util.register_pytree_node(DifferentiableArray, special_flatten, special_unflatten)
###############################################################################
# TESTING
###############################################################################
#### ak.layout.NumpyArray ####
test_numpyarray = ak.Array(np.arange(10, dtype=np.float64))
test_numpyarray_tangent = ak.Array(np.arange(10, dtype=np.float64))
def func_numpyarray_1(x):
return x[4] ** 2
def func_numpyarray_2(x):
return x[2:5] ** 2 + x[1:4] ** 2
def func_numpyarray_3(x):
return x[::-1]
#### ak.layout.ListOffsetArray ####
test_listoffsetarray = ak.Array([[1., 2., 3.], [], [4., 5.]])
test_listoffsetarray_tangent = ak.Array([[0., 0., 0.], [], [0., 1.]])
def func_listoffsetarray_1(x):
return x[2] * 2
def func_listoffsetarray_2(x):
return x * x
def func_listoffsetarray_3(x):
return x[0, 0] * x[2, 1]
def func_listoffsetarray_4(x):
return x[::-1] ** 2
def func_listoffsetarray_5(x):
return 2 * x[:-1]
def func_listoffsetarray_6(x):
return x[0][0] * x[2][1]
#### ak.layout.RecordArray ####
test_recordarray = ak.Array([
[{"x": 1.1, "y": [1.0]}, {"x": 2.2, "y": [1.0, 2.2]}],
[],
[{"x": 3.3, "y": [1.0, 2.0, 3.0]}]
])
test_recordarray_tangent = ak.Array([
[{"x": 0.0, "y": [1.0]}, {"x": 2.0, "y": [1.5, 0.0]}],
[],
[{"x": 1.5, "y": [2.0, 0.5, 1.0]}]
])
def func_recordarray_1(array):
return 2 * array.y[2][0][1] + 10
def func_recordarray_2(array):
return 2 * array.y[0][0][0] ** 2
def func_recordarray_3(array):
return 2 * array.y[2][0] + 10
def func_recordarray_4(array):
return 2 * array.y[0][0] ** 2
def func_recordarray_5(array):
return 2 * array.y[2] + 10
def func_recordarray_6(array):
return 2 * array.y[0] ** 2
def func_recordarray_7(array):
return 2 * array.y
def func_recordarray_8(array):
return 2 * array.y ** 2
def func_recordarray_9(array):
return 2 * array.y[2, 0, 1] + 10
def func_recordarray_10(array):
return 2 * array.y[0, 0, 0] ** 2
def func_recordarray_11(array):
return 2 * array.y[2, 0] + 10
def func_recordarray_12(array):
return 2 * array.y[0, 0] ** 2
value_jvp, jvp_grad = jax.jvp(func_numpyarray_3, (test_numpyarray,), (test_numpyarray_tangent,))
jit_value = jax.jit(func_numpyarray_3)(test_numpyarray)
# value_vjp, vjp_func = jax.vjp(func_recordarray_12, test_recordarray)
# print(type(value_vjp))
# print(vjp_func(test_recordarray))
# value, grad = jax.value_and_grad(func_numpyarray_2)(test_nparray)
print("Value and Grad are {0} and {1}".format(value_jvp, jvp_grad))
print("JIT value is {0}".format(jit_value))
# print("VJP value and grad is {0} and {1}".format(value_vjp, vjp_func(test_nparray)))
# print("Value and grad are {0} and {1}".format(value, grad))
|