1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward/blob/main/LICENSE
from __future__ import annotations
import numpy as np
import pytest
import awkward as ak
import awkward._connect.cling
import awkward._lookup
ROOT = pytest.importorskip("ROOT")
ROOT.ROOT.EnableImplicitMT(1)
compiler = ROOT.gInterpreter.Declare
def test_to_from_data_frame_large():
# Note, with n = 30 (14348907) this test takes ~40 sec to run on my laptop
n = 6
assert 2 * (n // 2) == n
rows = 3 ** (n // 2)
cols = n
arr = np.zeros((rows, cols), dtype=np.int64)
shape = (rows,)
source = np.array([-1, 0, 1], dtype=np.int64)[:, None]
for col in range(n // 2):
shape = (
-1,
3,
shape[-1] // 3,
)
col_view = arr[:, col]
col_view.shape = shape
col_view[:] = source
ak_array_in = ak.from_numpy(arr, regulararray=True)
data_frame = ak.to_rdataframe({"x": ak_array_in})
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert len(ak_array_in) == len(ak_array_out)
def test_data_frame_boolean():
ak_array_in = ak.Array([True, False, True, True, True])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "bool"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out.x.to_list()
def test_data_frame_integers():
ak_array_in = ak.Array([1, 2, 3, 4, 5])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "int64_t"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_real():
ak_array_in = ak.Array([1.1, 2.2, 3.3, 4.4, 5.5])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "double"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_complex():
ak_array_in = ak.Array([1.0 + 0.1j, 2.0 + 0.2j, 3.0 + 0.3j, 4.0 + 0.4j, 5.0 + 0.5j])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "std::complex<double>"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_strings():
ak_array_in = ak.Array(["one", "two", "three"])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "std::string"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_vec_of_integers():
ak_array_in = ak.Array([[1, 2], [3], [4, 5]])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "ROOT::VecOps::RVec<int64_t>"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_vec_of_real():
ak_array_in = ak.Array([[1.1, 2.2], [3.3], [4.4, 5.5]])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "ROOT::VecOps::RVec<double>"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_vec_of_complex():
ak_array_in = ak.Array(
[[1.0 + 0.1j, 2.0 + 0.2j], [3.0 + 0.3j], [4.0 + 0.4j, 5.0 + 0.5j]]
)
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "ROOT::VecOps::RVec<std::complex<double>>"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_vec_of_strings():
ak_array_in = ak.Array([["one"], ["two", "three"]])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x").startswith("awkward::ListArray_")
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_vec_of_vec_of_integers():
ak_array_in = ak.Array([[[1], [2]], [[3], [4, 5]]])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x").startswith("awkward::ListArray_")
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_vec_of_vec_of_real():
ak_array_in = ak.Array([[[1.1], [2.2]], [[3.3], [4.4, 5.5]]])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x").startswith("awkward::ListArray_")
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_vec_of_vec_of_complex():
ak_array_in = ak.Array(
[[[1.0 + 0.1j], [2.0 + 0.2j]], [[3.0 + 0.3j], [4.0 + 0.4j, 5.0 + 0.5j]]]
)
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x").startswith("awkward::ListArray_")
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_rdata_frame_vecs_as_records():
data_frame = ROOT.RDataFrame(10).Define("x", "gRandom->Rndm()")
data_frame_xy = data_frame.Define("y", "x*2")
ak_array_x = ak.from_rdataframe(
data_frame_xy,
columns=("x",),
)
assert ak_array_x["x"].layout.form == ak.forms.NumpyForm("float64")
ak_record_array_x = ak.from_rdataframe(
data_frame_xy,
columns=("x",),
)
assert ak_record_array_x.layout.form == ak.forms.RecordForm(
[ak.forms.NumpyForm("float64")], "x"
)
ak_record_array_y = ak.from_rdataframe(
data_frame_xy,
columns=("y",),
)
ak_array = ak.zip([ak_record_array_x, ak_record_array_y])
assert ak_array.layout.form == ak.forms.RecordForm(
contents=[
ak.forms.RecordForm([ak.forms.NumpyForm("float64")], "x"),
ak.forms.RecordForm([ak.forms.NumpyForm("float64")], "y"),
],
fields=None,
)
def test_rdata_frame_vecs_of_complex():
data_frame = ROOT.RDataFrame(10).Define("x", "gRandom->Rndm()")
data_frame_xy = data_frame.Define("y", "x*2 +1i")
ak_array_y = ak.from_rdataframe(
data_frame_xy,
columns=("y",),
)
assert ak_array_y["y"].layout.form == ak.forms.NumpyForm("complex128")
def test_rdata_frame_rvecs_as_records():
data_frame = ROOT.RDataFrame(1024)
coordDefineCode = """ROOT::VecOps::RVec<double> {0}(len);
std::transform({0}.begin(), {0}.end(), {0}.begin(), [](double){{return gRandom->Uniform(-1.0, 1.0);}});
return {0};"""
data_frame_x_y = (
data_frame.Define("len", "gRandom->Uniform(0, 16)")
.Define("x", coordDefineCode.format("x"))
.Define("y", coordDefineCode.format("y"))
)
# Now we have in hands d, a RDataFrame with two columns, x and y, which
# hold collections of coordinates. The size of these collections vary.
# Let's now define radii out of x and y. We'll do it treating the collections
# stored in the columns without looping on the individual elements.
data_frame_x_y_r = data_frame_x_y.Define("r", "sqrt(x*x + y*y)")
assert data_frame_x_y_r.GetColumnType("r") == "ROOT::VecOps::RVec<double>"
array = ak.from_rdataframe(
data_frame_x_y_r,
columns=("r",),
offsets_type="int32",
)
assert array.layout.form == ak.forms.RecordForm(
[ak.forms.ListOffsetForm("i32", ak.forms.NumpyForm("float64"))], ["r"]
)
def test_to_from_data_frame():
ak_array_in = ak.Array([[1.1], [2.2, 3.3, 4.4], [5.5, 6.6]])
assert ak_array_in.layout.content.is_contiguous is True
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "ROOT::VecOps::RVec<double>"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_out["x"].layout.content.is_contiguous is True
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_to_from_data_frame_rvec_of_rvec():
ak_array_in = ak.Array([[[1.1]], [[2.2, 3.3], [4.4]], [[5.5, 6.6], []]])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x").startswith("awkward::ListArray_")
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_to_from_data_frame_rvec_of_rvec_of_rvec():
ak_array_in = ak.Array(
[[[[1.1]]], [[[2.2], [3.3], [], [4.4]]], [[[], [5.5, 6.6], []]]]
)
data_frame = ak.to_rdataframe({"x": ak_array_in})
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_to_from_data_frame_columns_as_string():
ak_array_in = ak.Array(
[[[[1.1]]], [[[2.2], [3.3], [], [4.4]]], [[[], [5.5, 6.6], []]]]
)
data_frame = ak.to_rdataframe({"x": ak_array_in})
ak_array_out = ak.from_rdataframe(
data_frame,
columns="x",
)
assert ak_array_in.to_list() == ak_array_out.to_list()
|