1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward/blob/main/LICENSE
from __future__ import annotations
import numpy as np # noqa: F401
import pytest
import awkward as ak
ROOT = pytest.importorskip("ROOT")
ROOT.ROOT.EnableImplicitMT(1)
compiler = ROOT.gInterpreter.Declare
def test_data_frame_integers():
ak_array_in = ak.Array([1, 2, 3, 4, 5])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "int64_t"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_double():
ak_array_in = ak.Array([1.1, 2.2, 3.3, 4.4, 5.5])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "double"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_char():
ak_array_in = ak.Array(["a", "b", "c", "d", "e"])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "std::string"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_complex():
ak_array_in = ak.Array([1.1 + 0.1j, 2.2 + 0.2j, 3.3 + 0.3j, 4.4 + 0.4j, 5.5 + 0.5j])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "std::complex<double>"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_listoffset_integers():
ak_array_in = ak.Array([[1], [2, 3, 4], [5]])
data_frame = ak.to_rdataframe({"x": ak_array_in})
assert data_frame.GetColumnType("x") == "ROOT::VecOps::RVec<int64_t>"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_listoffset_listoffset_double():
ak_array_in = ak.Array(
[
[[1.1, 2.2, 3.3]],
[[4.4, 5.5]],
[[6.6], [7.7, 8.8, 9.9]],
]
)
data_frame = ak.to_rdataframe({"x": ak_array_in})
# awkward::ListArray_ type
# assert data_frame.GetColumnType("x") == "ROOT::VecOps::RVec<double>"
ak_array_out = ak.from_rdataframe(
data_frame,
columns=("x",),
)
assert ak_array_in.to_list() == ak_array_out["x"].to_list()
def test_data_frame_vec_of_vec():
array = ak.Array(
[
[
{"x": 1.1, "y": [1]},
{"x": None, "y": [1, 2]},
{"x": 3.3, "y": [1, 2, 3]},
],
[],
[{"x": None, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}],
]
)
# ] * 10000)
rdf2 = ak.to_rdataframe({"array": array})
# We create a matrix RxC here
# Note when dimensions R and C are large, the following code suffers
# from potential performance penalties caused by frequent reallocation
# of memory by the push_back() function. This should be used only when
# vector dimensions are not known in advance.
rdf3 = rdf2.Define(
"output",
"""
std::vector<std::vector<double>> tmp1;
for (auto record : array) {
std::vector<double> tmp2;
for (auto number : record.y()) {
tmp2.push_back(number * number);
}
tmp1.push_back(tmp2);
}
return tmp1;
""",
)
assert rdf3.GetColumnType("output") == "vector<vector<double> >"
out = ak.from_rdataframe(
rdf3,
columns=("output",),
)
assert out["output"].to_list() == (array["y"] * array["y"] * 1.0).to_list()
rdf3 = rdf2.Define(
"output2",
"""
std::vector<std::vector<std::vector<double>>> tmp1;
for (auto record : array) {
std::vector<std::vector<double>> tmp2;
// we can check if it's None:
// if (record.x().has_value())
// or set it to 1 so that we do not scale:
double x_number = record.x().value_or(1);
for (auto number : record.y()) {
std::vector<double> tmp3;
for (int64_t i = 0; i < std::rint(x_number); i++) {
double value = x_number * number;
tmp3.push_back(value);
}
tmp2.push_back(tmp3);
}
tmp1.push_back(tmp2);
}
return tmp1;
""",
)
assert rdf3.GetColumnType("output2") == "vector<vector<vector<double> > >"
out = ak.from_rdataframe(
rdf3,
columns=("output2",),
)
result = ak.Array(
[
[
[[1.1]], # "x" is 1 - "y" values are unchanged, and each is nesed
[
[1.0],
[2.0],
], # "x" is None - "y" values are unchanged, and each is nesed
[
[3.3, 3.3, 3.3],
[6.6, 6.6, 6.6],
[9.899999999999999, 9.899999999999999, 9.899999999999999],
], # "x" is 3.3 - "y" values are scaled by 3.3 and each is nesed 3 times
],
[],
[
[
[1.0],
[2.0],
[3.0],
[4.0],
], # "x" is None - "y" values are unchanged, and each is nesed
[
[5.5, 5.5, 5.5, 5.5, 5.5, 5.5],
[11.0, 11.0, 11.0, 11.0, 11.0, 11.0],
[16.5, 16.5, 16.5, 16.5, 16.5, 16.5],
[22.0, 22.0, 22.0, 22.0, 22.0, 22.0],
[27.5, 27.5, 27.5, 27.5, 27.5, 27.5],
], # "x" is 5.5 - "y" values are scaled by 5.5 and each is nesed 5 times
],
]
)
assert out["output2"].to_list() == result.to_list()
|