1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward/blob/main/LICENSE
from __future__ import annotations
import numpy as np
import pytest
import awkward as ak
array = ak.Array([[0, 2, 3.0], [4, 5, 6, 7, 8], [], [9, 8, None], [10, 1], []])
def test_sum():
assert ak.sum(array, axis=None) == pytest.approx(63.0)
assert ak.almost_equal(
ak.sum(array, axis=None, keepdims=True), ak.to_regular([[63.0]])
)
assert ak.almost_equal(
ak.sum(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[63.0]]).mask[[[True]]]),
)
assert ak.sum(array[2], axis=None, mask_identity=True) is None
def test_prod():
assert ak.prod(array[1:], axis=None) == pytest.approx(4838400.0)
assert ak.prod(array, axis=None) == 0
assert ak.almost_equal(
ak.prod(array, axis=None, keepdims=True), ak.to_regular([[0.0]])
)
assert ak.almost_equal(
ak.prod(array[1:], axis=None, keepdims=True), ak.to_regular([[4838400.0]])
)
assert ak.almost_equal(
ak.prod(array[1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[4838400.0]]).mask[[[True]]]),
)
assert ak.prod(array[2], axis=None, mask_identity=True) is None
def test_min():
assert ak.min(array, axis=None) == pytest.approx(0.0)
assert ak.almost_equal(
ak.min(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[0.0]]),
)
assert ak.almost_equal(
ak.min(array, axis=None, keepdims=True, initial=-100, mask_identity=False),
ak.to_regular([[-100.0]]),
)
assert ak.almost_equal(
ak.min(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[0.0]]).mask[[[True]]]),
)
assert ak.almost_equal(
ak.min(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[np.inf]]).mask[[[False]]]),
)
assert ak.min(array[2], axis=None, mask_identity=True) is None
def test_max():
assert ak.max(array, axis=None) == pytest.approx(10.0)
assert ak.almost_equal(
ak.max(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[10.0]]),
)
assert ak.almost_equal(
ak.max(array, axis=None, keepdims=True, initial=100, mask_identity=False),
ak.to_regular([[100.0]]),
)
assert ak.almost_equal(
ak.max(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[10.0]]).mask[[[True]]]),
)
assert ak.almost_equal(
ak.max(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[np.inf]]).mask[[[False]]]),
)
assert ak.max(array[2], axis=None, mask_identity=True) is None
def test_count():
assert ak.count(array, axis=None) == 12
assert ak.almost_equal(
ak.count(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[12]]),
)
assert ak.almost_equal(
ak.count(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[12]]).mask[[[True]]]),
)
assert ak.almost_equal(
ak.count(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[0]]).mask[[[False]]]),
)
assert ak.count(array[2], axis=None, mask_identity=True) is None
assert ak.count(array[2], axis=None, mask_identity=False) == 0
def test_count_nonzero():
assert ak.count_nonzero(array, axis=None) == 11
assert ak.almost_equal(
ak.count_nonzero(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[11]]),
)
assert ak.almost_equal(
ak.count_nonzero(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[11]]).mask[[[True]]]),
)
assert ak.almost_equal(
ak.count_nonzero(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[0]]).mask[[[False]]]),
)
assert ak.count_nonzero(array[2], axis=None, mask_identity=True) is None
assert ak.count_nonzero(array[2], axis=None, mask_identity=False) == 0
def test_std():
assert ak.std(array, axis=None) == pytest.approx(3.139134700306227)
assert ak.almost_equal(
ak.std(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[3.139134700306227]]),
)
assert ak.almost_equal(
ak.std(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[3.139134700306227]]).mask[[[True]]]),
)
assert np.isnan(ak.std(array[2], axis=None, mask_identity=False))
def test_std_no_mask_axis_none():
assert ak.almost_equal(
ak.std(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[0.0]]).mask[[[False]]]),
)
assert ak.std(array[2], axis=None, mask_identity=True) is None
def test_var():
assert ak.var(array, axis=None) == pytest.approx(9.854166666666666)
assert ak.almost_equal(
ak.var(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[9.854166666666666]]),
)
assert ak.almost_equal(
ak.var(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[9.854166666666666]]).mask[[[True]]]),
)
assert np.isnan(ak.var(array[2], axis=None, mask_identity=False))
def test_var_no_mask_axis_none():
assert ak.almost_equal(
ak.var(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[0.0]]).mask[[[False]]]),
)
assert ak.var(array[2], axis=None, mask_identity=True) is None
def test_mean():
assert ak.mean(array, axis=None) == pytest.approx(5.25)
assert ak.almost_equal(
ak.mean(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[5.25]]),
)
assert ak.almost_equal(
ak.mean(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[5.25]]).mask[[[True]]]),
)
assert np.isnan(ak.mean(array[2], axis=None, mask_identity=False))
def test_mean_no_mask_axis_none():
assert ak.almost_equal(
ak.mean(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[0.0]]).mask[[[False]]]),
)
assert ak.mean(array[2], axis=None, mask_identity=True) is None
def test_ptp():
assert ak.ptp(array, axis=None) == pytest.approx(10.0)
assert ak.almost_equal(
ak.ptp(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[10.0]]),
)
assert ak.almost_equal(
ak.ptp(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[10.0]]).mask[[[True]]]),
)
assert ak.ptp(array[2], axis=None, mask_identity=False) == pytest.approx(0.0)
def test_ptp_no_mask_axis_none():
assert ak.almost_equal(
ak.ptp(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[0.0]]).mask[[[False]]]),
)
assert ak.ptp(array[2], axis=None, mask_identity=True) is None
def test_argmax():
assert ak.argmax(array, axis=None) == 11
assert ak.almost_equal(
ak.argmax(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[11]]),
)
assert ak.almost_equal(
ak.argmax(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[11]]).mask[[[True]]]),
)
assert ak.almost_equal(
ak.argmax(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[0]]).mask[[[False]]]),
)
assert ak.argmax(array[2], axis=None, mask_identity=True) is None
assert ak.argmax(array[2], axis=None, mask_identity=False) == -1
def test_argmin():
assert ak.argmin(array, axis=None) == 0
assert ak.almost_equal(
ak.argmin(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[0]]),
)
assert ak.almost_equal(
ak.argmin(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[0]]).mask[[[True]]]),
)
assert ak.almost_equal(
ak.argmin(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[999]]).mask[[[False]]]),
)
assert ak.argmin(array[2], axis=None, mask_identity=True) is None
assert ak.argmin(array[2], axis=None, mask_identity=False) == -1
def test_any():
assert ak.any(array, axis=None)
assert ak.almost_equal(
ak.any(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[True]]),
)
assert ak.almost_equal(
ak.any(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[True]]).mask[[[True]]]),
)
assert ak.almost_equal(
ak.any(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[True]]).mask[[[False]]]),
)
assert ak.any(array[2], axis=None, mask_identity=True) is None
assert not ak.any(array[2], axis=None, mask_identity=False)
def test_all():
assert not ak.all(array, axis=None)
assert ak.almost_equal(
ak.all(array, axis=None, keepdims=True, mask_identity=False),
ak.to_regular([[False]]),
)
assert ak.almost_equal(
ak.all(array, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[False]]).mask[[[True]]]),
)
assert ak.almost_equal(
ak.all(array[-1:], axis=None, keepdims=True, mask_identity=True),
ak.to_regular(ak.Array([[False]]).mask[[[False]]]),
)
assert ak.all(array[2], axis=None, mask_identity=True) is None
assert ak.all(array[2], axis=None, mask_identity=False)
def test_prod_numpy():
array_reg = ak.from_numpy(np.arange(7 * 5 * 3, dtype=np.int64).reshape((7, 5, 3)))
result_reg = ak.from_numpy(np.array([[[5460]]], dtype=np.int64))
assert ak.sum(array_reg, axis=None) == 5460
assert ak.almost_equal(ak.sum(array_reg, axis=None, keepdims=True), result_reg)
assert ak.almost_equal(
ak.sum(array_reg, axis=None, keepdims=True, mask_identity=True),
ak.to_regular(result_reg.mask[[[[True]]]], axis=None),
)
|