File: how-to-convert-numpy.md

package info (click to toggle)
python-awkward 2.8.10-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,140 kB
  • sloc: python: 182,845; cpp: 33,828; sh: 432; makefile: 21; javascript: 8
file content (482 lines) | stat: -rw-r--r-- 13,475 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
---
jupytext:
  text_representation:
    extension: .md
    format_name: myst
    format_version: 0.13
    jupytext_version: 1.14.1
kernelspec:
  display_name: Python 3 (ipykernel)
  language: python
  name: python3
---

How to convert to/from NumPy
============================

As a generalization of NumPy, any NumPy array can be converted to an Awkward Array, but not vice-versa.

```{code-cell} ipython3
import awkward as ak
import numpy as np
```

From NumPy to Awkward
---------------------

The function for NumPy → Awkward conversion is {func}`ak.from_numpy`.

```{code-cell} ipython3
np_array = np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9])
np_array
```

```{code-cell} ipython3
ak_array = ak.from_numpy(np_array)
ak_array
```

However, NumPy arrays are also recognized by the {class}`ak.Array` constructor, so you can use that unless your goal is to explicitly draw the reader's attention to the fact that the input is a NumPy array.

```{code-cell} ipython3
ak_array = ak.Array(np_array)
ak_array
```

Fixed-size vs variable-length dimensions
----------------------------------------

If the NumPy array is multidimensional, the Awkward Array will be as well.

```{code-cell} ipython3
np_array = np.array([[100, 200], [101, 201], [103, 203]])
np_array
```

```{code-cell} ipython3
ak_array = ak.Array(np_array)
ak_array
```

It's important to notice that the type is `3 * 2 * int64`, not `3 * var * int64`. The second dimension has a fixed size—it is guaranteed to have exactly two items—just like a NumPy array. This differs from an Awkward Array constructed from Python lists:

```{code-cell} ipython3
ak.Array([[100, 200], [101, 201], [103, 203]])
```

or JSON:

```{code-cell} ipython3
ak.Array("[[100, 200], [101, 201], [103, 203]]")
```

because Python and JSON lists have arbitrary lengths, at least in principle, if not in a particular instance. Some behaviors depend on this fact (such as broadcasting rules).

+++

From Awkward to NumPy
---------------------

The function for Awkward → NumPy conversion is {func}`ak.to_numpy`.

```{code-cell} ipython3
np_array = np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9])
ak_array = ak.Array(np_array)
ak_array
```

```{code-cell} ipython3
ak.to_numpy(ak_array)
```

Awkward Arrays that happen to have regular structure can be converted to NumPy, even if their type is formally "variable length lists" (`var`):

```{code-cell} ipython3
ak_array = ak.Array([[1, 2, 3], [4, 5, 6]])
ak_array
```

```{code-cell} ipython3
ak.to_numpy(ak_array)
```

But if the lengths of nested lists do vary, attempts to convert to NumPy fail:

```{code-cell} ipython3
ak_array = ak.Array([[1, 2, 3], [], [4, 5]])
ak_array
```

```{code-cell} ipython3
:tags: [raises-exception]

ak.to_numpy(ak_array)
```

One might argue that such arrays should become NumPy arrays with `dtype="O"`. However, this is usually undesirable because these "NumPy object arrays" are just arrays of pointers to Python objects, and all the performance issues of dealing with Python objects apply.

If you do want this, use {func}`ak.to_list` with the {class}`np.ndarray` constructor.

```{code-cell} ipython3
np.array(ak.to_list(ak_array), dtype="O")
```

Implicit Awkward to NumPy conversion
------------------------------------

Awkward Arrays satisfy NumPy's `__array__` protocol, so simply passing an Awkward Array to the {class}`np.ndarray` constructor calls {func}`ak.to_numpy`.

```{code-cell} ipython3
ak_array = ak.Array([[1, 2, 3], [4, 5, 6]])
ak_array
```

```{code-cell} ipython3
np.array(ak_array)
```

Libraries that expect NumPy arrays as input, such as Matplotlib, use this.

```{code-cell} ipython3
import matplotlib.pyplot as plt

plt.plot(ak_array);
```

Implicit conversion to NumPy inherits the same restrictions as {func}`ak.to_numpy`, namely that variable-length lists cannot be converted to NumPy.

```{code-cell} ipython3
ak_array = ak.Array([[1, 2, 3], [], [4, 5]])
ak_array
```

```{code-cell} ipython3
:tags: [raises-exception]

np.array(ak_array)
```

NumPy's structured arrays
-------------------------

[NumPy's structured arrays](https://numpy.org/doc/stable/user/basics.rec.html) correspond to Awkward's "record type."

```{code-cell} ipython3
np_array = np.array(
    [(1, 1.1), (2, 2.2), (3, 3.3), (4, 4.4), (5, 5.5)], dtype=[("x", int), ("y", float)]
)
np_array
```

```{code-cell} ipython3
ak_array = ak.from_numpy(np_array)
ak_array
```

```{code-cell} ipython3
ak.to_numpy(ak_array)
```

Awkward Arrays with record type can be sliced by field name like NumPy structured arrays:

```{code-cell} ipython3
ak_array["x"]
```

```{code-cell} ipython3
np_array["x"]
```

But Awkward Arrays can be sliced by field name _and_ index within the same square brackets, whereas NumPy requires two sets of square brackets.

```{code-cell} ipython3
ak_array["x", 2]
```

```{code-cell} ipython3
:tags: [raises-exception]

np_array["x", 2]
```

```{code-cell} ipython3
np_array["x"][2]
```

They have the same commutivity, however. In this example, slicing `"x"` and then `2` returns the same result as `2` and then `"x"`.

```{code-cell} ipython3
ak_array[2, "x"]
```

```{code-cell} ipython3
np_array[2]["x"]
```

NumPy's masked arrays
---------------------

[NumPy's masked arrays](https://numpy.org/doc/stable/reference/maskedarray.generic.html) correspond to Awkward's "option type."

```{code-cell} ipython3
np_array = np.ma.MaskedArray(
    [[1, 2, 3], [4, 5, 6]], mask=[[False, True, False], [True, True, False]]
)
np_array
```

```{code-cell} ipython3
np_array.tolist()
```

```{code-cell} ipython3
ak_array = ak.from_numpy(np_array)
ak_array
```

The `?` before `int64` (expands to `option[...]` for more complex contents) refers to "option type," meaning that the values can be missing ("None" in Python).

It is possible for a dataset to have no missing data, yet still have option type, just as it's possible to have a NumPy masked array with no mask.

```{code-cell} ipython3
ak.from_numpy(np.ma.MaskedArray([[1, 2, 3], [4, 5, 6]], mask=False))
```

Awkward Arrays with option type are converted to NumPy masked arrays.

```{code-cell} ipython3
ak.to_numpy(ak_array)
```

```{code-cell} ipython3
ak.to_numpy(ak_array).tolist()
```

Note, however, that the structure of an Awkward Array's option type is not always preserved when converting to NumPy masked arrays. Masked arrays can only have missing numbers, not missing lists, so missing lists are expanded into lists of missing numbers.

For example, an array of type `var * ?int64` can be converted into an identical NumPy structure:

```{code-cell} ipython3
ak_array1 = ak.Array([[1, None, 3], [None, None, 6]])
ak_array1
```

```{code-cell} ipython3
ak.to_numpy(ak_array1).tolist()
```

But an array of type `option[var * int64]` must have its missing lists expanded into lists of missing numbers.

```{code-cell} ipython3
ak_array2 = ak.Array([[1, 2, 3], None, [4, 5, 6]])
ak_array2
```

```{code-cell} ipython3
ak.to_numpy(ak_array2).tolist()
```

Finally, it is possible to prevent the {func}`ak.to_numpy` function from creating NumPy masked arrays by passing `allow_missing=False`.

```{code-cell} ipython3
:tags: [raises-exception]

ak.to_numpy(ak_array, allow_missing=False)
```

You might want to do this to be sure that the output of {func}`ak.to_numpy` has type {class}`np.ndarray` (or die trying).

+++

NumpyArray shapes vs RegularArrays
----------------------------------

```{note}
Advanced topic: it is not necessary to understand the internal representation in order to use Awkward Arrays in data analysis.
```

One reason you might want to use {func}`ak.from_numpy` directly is to control how it is internally represented.

Inside of an {class}`ak.Array`, data structures are represented by "layout nodes" such as {class}`ak.contents.NumpyArray` and {class}`ak.contents.RegularArray`.

```{code-cell} ipython3
np_array = np.array([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]], dtype="i1")
ak_array1 = ak.from_numpy(np_array)
ak_array1.layout
```

In the above, the shape is represented as part of the {class}`ak.contents.NumpyArray` node, but it could also have been represented in {class}`ak.contents.RegularArray` nodes.

```{code-cell} ipython3
ak_array2 = ak.from_numpy(np_array, regulararray=True)
ak_array2.layout
```

In the above, the internal {class}`ak.contents.NumpyArray` is one-dimensional and the shape is described by nesting it within two {class}`ak.contents.RegularArray` nodes.

This distinction is technical: `ak_array1` and `ak_array2` have the same {func}`ak.type` and behave identically (including broadcasting rules).

```{code-cell} ipython3
ak.type(ak_array1)
```

```{code-cell} ipython3
ak.type(ak_array2)
```

```{code-cell} ipython3
ak_array1 == ak_array2
```

```{code-cell} ipython3
ak.all(ak_array1 == ak_array2)
```

Mutability of Awkward Arrays from NumPy
---------------------------------------

```{note}
Advanced topic: unless you're willing to investigate subtleties of when a NumPy array is viewed and when it is copied, do not modify the NumPy arrays that Awkward Arrays are built from (or build Awkward Arrays from deliberate copies of the NumPy arrays).
```

Awkward Arrays are not supposed to be changed in place ("mutated"), and all of the functions in the Awkward Array library return new values, rather than changing the old. However, it is possible to create an Awkward Array from a NumPy array and modify the NumPy array in place, thus modifying the Awkward Array. Wherever possible, Awkward Arrays are _views_ of the NumPy data, not _copies_.

```{code-cell} ipython3
np_array = np.array([[1, 2, 3], [4, 5, 6]])
np_array
```

```{code-cell} ipython3
ak_array = ak.from_numpy(np_array)
ak_array
```

```{code-cell} ipython3
# Change the NumPy array in place.
np_array *= 100
np_array
```

```{code-cell} ipython3
# The Awkward Array changes as well.
ak_array
```

You might want to do this in some performance-critical applications. However, note that NumPy arrays sometimes have to be copied to make an Awkward Array.

For example, if a NumPy array is not C-contiguous and is internally represented as a {class}`ak.contents.RegularArray` (see previous section), it must be copied.

```{code-cell} ipython3
# Slicing the inner dimension of this NumPy array makes it not C-contiguous.
np_array = np.array([[1, 2, 3], [4, 5, 6]])
np_array.flags["C_CONTIGUOUS"], np_array[:, :-1].flags["C_CONTIGUOUS"]
```

```{code-cell} ipython3
# Case 1: C-contiguous and not RegularArray (should view).
ak_array1 = ak.from_numpy(np_array)
ak_array1
```

```{code-cell} ipython3
# Case 2: C-contiguous and RegularArray (should view).
ak_array2 = ak.from_numpy(np_array, regulararray=True)
ak_array2
```

```{code-cell} ipython3
# Case 3: not C-contiguous and not RegularArray (should view).
ak_array3 = ak.from_numpy(np_array[:, :-1])
ak_array3
```

```{code-cell} ipython3
# Case 4: not C-contiguous and RegularArray (has to copy).
ak_array4 = ak.from_numpy(np_array[:, :-1], regulararray=True)
ak_array4
```

```{code-cell} ipython3
# Change the NumPy array in place.
np_array *= 100
np_array[:, :-1]
```

```{code-cell} ipython3
# Case 1 changes as well because it is a view.
ak_array1
```

```{code-cell} ipython3
# Case 2 changes as well because it is a view.
ak_array2
```

```{code-cell} ipython3
# Case 3 changes as well because it is a view.
ak_array3
```

```{code-cell} ipython3
# Case 4 does not change because it is a copy.
ak_array4
```

In general, it can be hard to determine if an Awkward Array is a view or a copy because some operations need to construct a {class}`ak.contents.RegularArray`. Furthermore, the view-vs-copy behavior can change from one version of Awkward Array to the next. It is only safe to rely on view-vs-copy behavior of Awkward Arrays that were directly created from NumPy arrays, as in the four cases above, not in any derived arrays (i.e. arrays produced from slices of Awkward Arrays or computed using functions from the Awkward Array library).

+++

Mutability of Awkward Arrays converted to NumPy
-----------------------------------------------

```{note}
Advanced topic: unless you're willing to investigate subtleties of when an Awkward array is viewed and when it is copied, do not modify the NumPy arrays that Awkward Arrays are converted into (or make deliberate copies of the resulting NumPy arrays).
```

The considerations described above also apply to NumPy arrays created from Awkward Arrays. If possible, they are _views_, rather than _copies_, but these semantics are not guaranteed.

```{code-cell} ipython3
ak_array = ak.Array([[1, 2, 3], [4, 5, 6]])
ak_array
```

```{code-cell} ipython3
np_array = ak.to_numpy(ak_array)
np_array
```

```{code-cell} ipython3
# Change the NumPy array in place.
np_array *= 100
np_array
```

```{code-cell} ipython3
# The Awkward Array that it came from is changed as well.
ak_array
```

As a counter-example, a NumPy array constructed from an Awkward Array with missing data _might not_ be a view. (It depends on the internal representation; the most common case of an {class}`ak.contents.IndexedOptionArray` is not.)

```{code-cell} ipython3
ak_array1 = ak.Array([[1, None, 3], [None, None, 6]])
ak_array1
```

```{code-cell} ipython3
np_array = ak.to_numpy(ak_array1)
np_array
```

```{code-cell} ipython3
# Change the NumPy array in place.
np_array *= 100
np_array
```

```{code-cell} ipython3
:tags: []

# The Awkward Array that it came from is not changed in this case.
ak_array1
```