File: chep2019-studies-3.cpp

package info (click to toggle)
python-awkward 2.8.10-2
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 25,144 kB
  • sloc: python: 182,845; cpp: 33,828; sh: 432; makefile: 21; javascript: 8
file content (231 lines) | stat: -rw-r--r-- 8,520 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH
// g++ `root-config --cflags` -Iawkward-1.0/include -Iawkward-1.0/rapidjson/include chep2019-studies-3.cpp -L. -lawkward `root-config --libs` -lROOTNTuple -o chep2019-studies-3 && ./chep2019-studies-3

#include <cstring>
#include <chrono>
#include <iostream>

#include "awkward/Identity.h"
#include "awkward/array/RawArray.h"
#include "awkward/array/ListOffsetArray.h"

#include "ROOT/RNTupleModel.hxx"
#include "ROOT/RNTupleMetrics.hxx"
#include "ROOT/RNTupleOptions.hxx"
#include "ROOT/RNTupleUtil.hxx"
#include "ROOT/RNTuple.hxx"
#include "ROOT/RNTupleView.hxx"
#include "ROOT/RNTupleDS.hxx"
#include "ROOT/RNTupleDescriptor.hxx"

#define LENJAGGED0 1073741824
#define LENJAGGED1 134217728
#define LENJAGGED2 16777216
#define LENJAGGED3 2097152

#define kDefaultClusterSizeEntries 64000

namespace ak = awkward;

template <typename V, typename T>
void fillpages(T* array, V& view, int64_t& offset, int64_t length, int64_t shift) {
  int64_t current = 0;
  while (current < length) {
    T* data = (T*)view.fField.Map(offset + current);
    int32_t num = view.fField.fPrincipalColumn->fCurrentPage.GetNElements();
    int32_t skipped = (offset + current) - view.fField.fPrincipalColumn->fCurrentPage.GetGlobalRangeFirst();
    int32_t remaining = num - skipped;
    if (current + remaining > length) {
      remaining = length - current;
    }
    if (remaining > 0) {
      memcpy(&array[current + shift], data, remaining*sizeof(T));
    }
    current += remaining;
  }
  offset += current;
}

double jagged0() {
  double total_length = 0.0;

  auto model = ROOT::Experimental::RNTupleModel::Create();
  ROOT::Experimental::RNTupleReadOptions options;
  auto ntuple = ROOT::Experimental::RNTupleReader::Open(std::move(model), "jagged0", "data/sample-jagged0.ntuple", options);
  auto view0 = ntuple->GetViewCollection("field");

  int64_t offset0 = 0;
  for (uint64_t entry = 0;  entry < LENJAGGED0;  entry += kDefaultClusterSizeEntries) {
    int64_t length = kDefaultClusterSizeEntries;
    if (entry + length > LENJAGGED0) {
      length = LENJAGGED0 - entry;
    }
    ak::RawArrayOf<float> content(ak::Identity::none(), length);
    float* rawcontent = content.ptr().get();
    fillpages(rawcontent, view0, offset0, length, 0);
    total_length += length;
  }
  std::cout << total_length << std::endl;
  return total_length;
}

double jagged1() {
  double total_length = 0.0;

  auto model = ROOT::Experimental::RNTupleModel::Create();
  ROOT::Experimental::RNTupleReadOptions options;
  auto ntuple = ROOT::Experimental::RNTupleReader::Open(std::move(model), "jagged1", "data/sample-jagged1.ntuple", options);
  auto view1 = ntuple->GetViewCollection("field");
  auto view0 = view1.GetView<float>("float");

  int64_t offset1 = 0;
  int64_t offset0 = 0;
  for (int64_t entry = 0;  entry < LENJAGGED1;  entry += kDefaultClusterSizeEntries) {
    int64_t length = kDefaultClusterSizeEntries;
    if (entry + length > LENJAGGED1) {
      length = LENJAGGED1 - entry;
    }
    ak::Index32 offsets1(length + 1);
    int32_t* rawoffsets1 = offsets1.ptr().get();
    rawoffsets1[0] = 0;
    fillpages(rawoffsets1, view1, offset1, length, 1);

    length = rawoffsets1[length];
    ak::RawArrayOf<float> content(ak::Identity::none(), length);
    float* rawcontent = content.borrow(0);
    fillpages(rawcontent, view0, offset0, length, 0);

    ak::ListOffsetArray32 done(ak::Identity::none(), offsets1, content.shallow_copy());
    total_length += length;
  }

  std::cout << total_length << std::endl;
  return total_length;
}

double jagged2() {
  double total_length = 0.0;

  auto model = ROOT::Experimental::RNTupleModel::Create();
  ROOT::Experimental::RNTupleReadOptions options;
  auto ntuple = ROOT::Experimental::RNTupleReader::Open(std::move(model), "jagged2", "data/sample-jagged2.ntuple", options);
  auto view2 = ntuple->GetViewCollection("field");
  auto view1 = view2.GetViewCollection("std::vector<float>");
  auto view0 = view1.GetView<float>("float");

  int64_t offset2 = 0;
  int64_t offset1 = 0;
  int64_t offset0 = 0;
  for (int64_t entry = 0;  entry < LENJAGGED2;  entry += kDefaultClusterSizeEntries) {
    int64_t length = kDefaultClusterSizeEntries;
    if (entry + length > LENJAGGED2) {
      length = LENJAGGED2 - entry;
    }
    ak::Index32 offsets2(length + 1);
    int32_t* rawoffsets2 = offsets2.ptr().get();
    rawoffsets2[0] = 0;
    fillpages(rawoffsets2, view2, offset2, length, 1);

    length = rawoffsets2[length];
    ak::Index32 offsets1(length + 1);
    int32_t* rawoffsets1 = offsets1.ptr().get();
    rawoffsets1[0] = 0;
    fillpages(rawoffsets1, view1, offset1, length, 1);

    length = rawoffsets1[length];
    ak::RawArrayOf<float> content(ak::Identity::none(), length);
    float* rawcontent = content.borrow(0);
    fillpages(rawcontent, view0, offset0, length, 0);

    ak::ListOffsetArray32 tmp(ak::Identity::none(), offsets1, content.shallow_copy());
    ak::ListOffsetArray32 done(ak::Identity::none(), offsets2, tmp.shallow_copy());
    total_length += length;
  }

  std::cout << total_length << std::endl;
  return total_length;
}

double jagged3() {
  double total_length = 0.0;

  auto model = ROOT::Experimental::RNTupleModel::Create();
  ROOT::Experimental::RNTupleReadOptions options;
  auto ntuple = ROOT::Experimental::RNTupleReader::Open(std::move(model), "jagged3", "data/sample-jagged3.ntuple", options);
  auto view3 = ntuple->GetViewCollection("field");
  auto view2 = view3.GetViewCollection("std::vector<std::vector<float>>");
  auto view1 = view2.GetViewCollection("std::vector<float>");
  auto view0 = view1.GetView<float>("float");

  int64_t offset3 = 0;
  int64_t offset2 = 0;
  int64_t offset1 = 0;
  int64_t offset0 = 0;
  for (int64_t entry = 0;  entry < LENJAGGED3;  entry += kDefaultClusterSizeEntries) {
    int64_t length = kDefaultClusterSizeEntries;
    if (entry + length > LENJAGGED3) {
      length = LENJAGGED3 - entry;
    }
    ak::Index32 offsets3(length + 1);
    int32_t* rawoffsets3 = offsets3.ptr().get();
    rawoffsets3[0] = 0;
    fillpages(rawoffsets3, view3, offset3, length, 1);

    length = rawoffsets3[length];
    ak::Index32 offsets2(length + 1);
    int32_t* rawoffsets2 = offsets2.ptr().get();
    rawoffsets2[0] = 0;
    fillpages(rawoffsets2, view2, offset2, length, 1);

    length = rawoffsets2[length];
    ak::Index32 offsets1(length + 1);
    int32_t* rawoffsets1 = offsets1.ptr().get();
    rawoffsets1[0] = 0;
    fillpages(rawoffsets1, view1, offset1, length, 1);

    length = rawoffsets1[length];
    ak::RawArrayOf<float> content(ak::Identity::none(), length);
    float* rawcontent = content.borrow(0);
    fillpages(rawcontent, view0, offset0, length, 0);

    ak::ListOffsetArray32 tmp1(ak::Identity::none(), offsets1, content.shallow_copy());
    ak::ListOffsetArray32 tmp2(ak::Identity::none(), offsets2, tmp1.shallow_copy());
    ak::ListOffsetArray32 done(ak::Identity::none(), offsets3, tmp2.shallow_copy());
    total_length += length;
  }

  std::cout << total_length << std::endl;
  return total_length;
}

int main() {
  {
    auto start0 = std::chrono::high_resolution_clock::now();
    double num0 = jagged0();
    auto stop0 = std::chrono::high_resolution_clock::now();
    double walltime0 = std::chrono::duration<double>(stop0 - start0).count();
    std::cout << "jagged0 " << walltime0 << "sec;\t" << num0/walltime0/1e6 << " million floats/sec" << std::endl;
  }
  {
    auto start1 = std::chrono::high_resolution_clock::now();
    double num1 = jagged1();
    auto stop1 = std::chrono::high_resolution_clock::now();
    double walltime1 = std::chrono::duration<double>(stop1 - start1).count();
    std::cout << "jagged1 " << walltime1 << "sec;\t" << num1/walltime1/1e6 << " million floats/sec" << std::endl;
  }
  {
    auto start2 = std::chrono::high_resolution_clock::now();
    double num2 = jagged2();
    auto stop2 = std::chrono::high_resolution_clock::now();
    double walltime2 = std::chrono::duration<double>(stop2 - start2).count();
    std::cout << "jagged2 " << walltime2 << "sec;\t" << num2/walltime2/1e6 << " million floats/sec" << std::endl;
  }
  {
    auto start3 = std::chrono::high_resolution_clock::now();
    double num3 = jagged3();
    auto stop3 = std::chrono::high_resolution_clock::now();
    double walltime3 = std::chrono::duration<double>(stop3 - start3).count();
    std::cout << "jagged3 " << walltime3 << "sec;\t" << num3/walltime3/1e6 << " million floats/sec" << std::endl;
  }
  return 0;
}