File: utils.h

package info (click to toggle)
python-awkward 2.8.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 24,932 kB
  • sloc: python: 178,875; cpp: 33,828; sh: 432; makefile: 21; javascript: 8
file content (314 lines) | stat: -rw-r--r-- 9,545 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// BSD 3-Clause License; see https://github.com/scikit-hep/awkward/blob/main/LICENSE

#ifndef AWKWARD_CPP_HEADERS_UTILS_H_
#define AWKWARD_CPP_HEADERS_UTILS_H_

#include <iterator>
#include <iostream>
#include <complex>
#include <type_traits>
#include <cassert>
#include <utility>
#include <stdexcept>
#include <stdint.h>
#include <typeinfo>
#include <map>
#include <vector>

namespace awkward {

  // FIXME:
  // The following helper variable templates are part of C++17,
  // define it ourselves until we switch to it
  template< class T >
  constexpr bool is_integral_v = std::is_integral<T>::value;

  template< class T >
  constexpr bool is_signed_v = std::is_signed<T>::value;

  template< class T, class U >
  constexpr bool is_same_v = std::is_same<T, U>::value;

  /// @brief Returns the name of a primitive type as a string.
  template <typename T>
  inline const std::string
  type_to_name() {
    if (is_integral_v<T>) {
      if (is_signed_v<T>) {
        if (sizeof(T) == 1) {
          return "int8";
        }
        else if (sizeof(T) == 2) {
          return "int16";
        }
        else if (sizeof(T) == 4) {
          return "int32";
        }
        else if (sizeof(T) == 8) {
          return "int64";
        }
      }
      else {
        if (sizeof(T) == 1) {
          return "uint8";
        }
        else if (sizeof(T) == 2) {
          return "uint16";
        }
        else if (sizeof(T) == 4) {
          return "uint32";
        }
        else if (sizeof(T) == 8) {
          return "uint64";
        }
      }
    }
    else if (is_same_v<T, float>) {
      return "float32";
    }
    else if (is_same_v<T, double>) {
      return "float64";
    }
    else if (is_same_v<T, std::complex<float>>) {
      return "complex64";
    }
    else if (is_same_v<T, std::complex<double>>) {
      return "complex128";
    }

    // std::is_integral_v<T> and sizeof(T) not in (1, 2, 4, 8) can get here.
    // Don't connect this line with the above as an 'else' clause.
    return std::string("unsupported primitive type: ") + typeid(T).name();
  }

  template <>
  inline const std::string
  type_to_name<bool>() {
    // This takes precedence over the unspecialized template, and therefore any
    // 8-bit data that is not named bool will be mapped to "int8" or "uint8".
    return "bool";
  }

  template <>
  inline const std::string
  type_to_name<char>() {
    // This takes precedence over the unspecialized template, and therefore any
    // 8-bit data that is not named char will be mapped to "int8" or "uint8".
    return "char";
  }


  /// @brief Returns `char` string when the primitive type
  /// is a character.
  template <typename T>
  inline const std::string
  type_to_numpy_like() {
    return type_to_name<T>();
  }

  /// @brief Returns numpy-like character code of a primitive
  /// type as a string.
  template <>
  inline const std::string
  type_to_numpy_like<uint8_t>() {
    return "u8";
  }

  /// @brief Returns numpy-like character code `i8`, when the
  /// primitive type is an 8-bit signed integer.
  template <>
  inline const std::string
  type_to_numpy_like<int8_t>() {
    return "i8";
  }

  /// @brief Returns numpy-like character code `u32`, when the
  /// primitive type is a 32-bit unsigned integer.
  template <>
  inline const std::string
  type_to_numpy_like<uint32_t>() {
    return "u32";
  }

  /// @brief Returns numpy-like character code `i32`, when the
  /// primitive type is a 32-bit signed integer.
  template <>
  inline const std::string
  type_to_numpy_like<int32_t>() {
    return "i32";
  }

  /// @brief Returns numpy-like character code `i64`, when the
  /// primitive type is a 64-bit signed integer.
  template <>
  inline const std::string
  type_to_numpy_like<int64_t>() {
    return "i64";
  }

  template <typename, typename = void>
  constexpr bool is_iterable{};

  // FIXME:
  // std::void_t is part of C++17, define it ourselves until we switch to it
  template <typename...>
  struct voider {
    using type = void;
  };

  template <typename... T>
  using void_t = typename voider<T...>::type;

  template <typename T>
  constexpr bool is_iterable<T,
                             void_t<decltype(std::declval<T>().begin()),
                                    decltype(std::declval<T>().end())>> = true;

  template <typename Test, template <typename...> class Ref>
  struct is_specialization : std::false_type {};

  template <template <typename...> class Ref, typename... Args>
  struct is_specialization<Ref<Args...>, Ref> : std::true_type {};

  /// @brief Generates a Form, which is a unique description of the
  /// Layout Builder and its contents in the form of a JSON-like string.
  ///
  /// Used in RDataFrame to generate the form of the Numpy Layout Builder
  /// and ListOffset Layout Builder.
  template <typename T, typename OFFSETS>
  std::string
  type_to_form(int64_t form_key_id) {
    if (std::string(typeid(T).name()).find("awkward") != std::string::npos) {
      return std::string("awkward type");
    }

    std::stringstream form_key;
    form_key << "node" << (form_key_id++);

    if (std::is_arithmetic<T>::value) {
      std::string parameters(type_to_name<T>() + "\", ");
      if (std::is_same<T, char>::value) {
        parameters = std::string(
            "uint8\", \"parameters\": { \"__array__\": \"char\" }, ");
      }
      return "{\"class\": \"NumpyArray\", \"primitive\": \"" + parameters +
             "\"form_key\": \"" + form_key.str() + "\"}";
    } else if (is_specialization<T, std::complex>::value) {
      return "{\"class\": \"NumpyArray\", \"primitive\": \"" +
             type_to_name<T>() + "\", \"form_key\": \"" + form_key.str() +
             "\"}";
    }

    typedef typename T::value_type value_type;

    if (is_iterable<T>) {
      std::string parameters("");
      if (std::is_same<value_type, char>::value) {
        parameters =
            std::string(" \"parameters\": { \"__array__\": \"string\" }, ");
      }
      return "{\"class\": \"ListOffsetArray\", \"offsets\": \"" +
             type_to_numpy_like<OFFSETS>() + "\", "
             "\"content\":" +
             type_to_form<value_type, OFFSETS>(form_key_id) + ", " + parameters +
             "\"form_key\": \"" + form_key.str() + "\"}";
    }
    return "unsupported type";
  }

  /// @brief Check if an RDataFrame column is an Awkward Array.
  template <typename T>
  bool
  is_awkward_type() {
    return (std::string(typeid(T).name()).find("awkward") != std::string::npos);
  }

  /// @class visit_impl
  ///
  /// @brief Class to index tuple at runtime.
  ///
  /// @tparam INDEX Index of the tuple contents.
  template <size_t INDEX>
  struct visit_impl {
    /// @brief Accesses the tuple contents at `INDEX` and
    /// calls the given function on it.
    ///
    /// @tparam CONTENT Type of tuple content.
    /// @tparam FUNCTION Function to be called on the tuple content.
    template <typename CONTENT, typename FUNCTION>
    static void
    visit(CONTENT& contents, size_t index, FUNCTION fun) {
      if (index == INDEX - 1) {
        fun(std::get<INDEX - 1>(contents));
      } else {
        visit_impl<INDEX - 1>::visit(contents, index, fun);
      }
    }
  };

  /// @brief `INDEX` reached `0`, which means the runtime index did not
  /// exist in the tuple.
  template <>
  struct visit_impl<0> {
    template <typename CONTENT, typename FUNCTION>
    static void
    visit(CONTENT& /* contents */, size_t /* index */, FUNCTION /* fun */) {
      assert(false);
    }
  };

  /// @brief Visits the tuple contents at `index`.
  template <typename FUNCTION, typename... CONTENTs>
  void
  visit_at(std::tuple<CONTENTs...> const& contents, size_t index, FUNCTION fun) {
    visit_impl<sizeof...(CONTENTs)>::visit(contents, index, fun);
  }

  /// @brief Visits the tuple contents at `index`.
  template <typename FUNCTION, typename... CONTENTs>
  void
  visit_at(std::tuple<CONTENTs...>& contents, size_t index, FUNCTION fun) {
    visit_impl<sizeof...(CONTENTs)>::visit(contents, index, fun);
  }

  /// @brief Helper function to retrieve the names of the buffers.
  ///
  /// Note: use with caution, beware of a potential mismatch between retrieved values!
  template<typename LayoutBuilder>
  std::vector<std::string> buffer_name_helper(const LayoutBuilder* builder) {
    std::map <std::string, size_t> names_nbytes = {};
    std::vector<std::string> buffer_name;
    builder->buffer_nbytes(names_nbytes);
    for (auto it: names_nbytes) {
      buffer_name.push_back(it.first);
    }
    return buffer_name;
  }

  /// @brief Helper function to retrieve the sizes (in bytes) of the buffers.
  ///
  /// Note: use with caution, beware of a potential mismatch between retrieved values!
  template<typename LayoutBuilder>
  std::vector<size_t> buffer_size_helper(const LayoutBuilder* builder) {
    std::map <std::string, size_t> names_nbytes = {};
    std::vector<size_t> buffer_size;
    builder->buffer_nbytes(names_nbytes);
    for (auto it: names_nbytes) {
      buffer_size.push_back(it.second);
    }
    return buffer_size;
  }

  /// @brief Helper function to retrieve the number of the buffers.
  ///
  /// Note: use with caution, beware of a potential mismatch between retrieved values!
  template<typename LayoutBuilder>
  size_t num_buffers_helper(const LayoutBuilder* builder) {
    std::map <std::string, size_t> names_nbytes = {};
    builder->buffer_nbytes(names_nbytes);
    return names_nbytes.size();
  }

}  // namespace awkward

#endif  // AWKWARD_CPP_HEADERS_UTILS_H_