File: test_3136_cuda_argmin_and_argmax.py

package info (click to toggle)
python-awkward 2.8.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 24,932 kB
  • sloc: python: 178,875; cpp: 33,828; sh: 432; makefile: 21; javascript: 8
file content (195 lines) | stat: -rw-r--r-- 5,127 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from __future__ import annotations

import cupy as cp
import pytest

import awkward as ak

to_list = ak.operations.to_list


@pytest.fixture(scope="function", autouse=True)
def cleanup_cuda():
    yield
    cp._default_memory_pool.free_all_blocks()
    cp.cuda.Device().synchronize()


def test_0835_argmin_argmax_axis_None():
    array = ak.highlevel.Array(
        [
            [
                [2022, 2023, 2025],
                [],
                [2027, 2011],
                [2013],
            ],
            [],
            [[2017, 2019], [2023]],
        ],
    )
    cuda_array = ak.to_backend(array, "cuda")

    assert ak.operations.argmin(cuda_array) == 4
    assert ak.operations.argmax(cuda_array) == 3


def test_1106_argminmax_axis_None_missing_values():
    array = ak.highlevel.Array([1, 2, 3, None, 4])

    cuda_array = ak.to_backend(array, "cuda")

    assert ak.operations.argmax(cuda_array) == 4


def test_0070_argmin_and_argmax_jagged():
    v2_array = ak.operations.from_iter(
        [[2.2, 1.1, 3.3], [], [4.4, 5.5], [5.5], [-4.4, -5.5, -6.6]], highlevel=False
    )

    cuda_v2_array = ak.to_backend(v2_array, "cuda", highlevel=False)

    assert to_list(ak.argmin(cuda_v2_array, axis=1, highlevel=False)) == [
        1,
        None,
        0,
        0,
        2,
    ]
    assert (
        ak.argmin(cuda_v2_array.to_typetracer(), axis=1, highlevel=False).form
        == ak.argmin(cuda_v2_array, axis=1, highlevel=False).form
    )

    index2 = ak.index.Index64(cp.array([4, 3, 2, 1, 0], dtype=cp.int64))
    cuda_v2_array2 = ak.contents.IndexedArray(index2, cuda_v2_array)

    assert to_list(ak.argmin(cuda_v2_array2, axis=1, highlevel=False)) == [
        2,
        0,
        0,
        None,
        1,
    ]
    assert (
        ak.argmin(cuda_v2_array2.to_typetracer(), axis=1, highlevel=False).form
        == ak.argmin(cuda_v2_array2, axis=1, highlevel=False).form
    )

    index3 = ak.index.Index64(cp.array([4, 3, -1, 4, 0], dtype=cp.int64))
    cuda_v2_array2 = ak.contents.IndexedOptionArray(index3, cuda_v2_array)

    assert to_list(ak.argmin(cuda_v2_array2, axis=1, highlevel=False)) == [
        2,
        0,
        None,
        2,
        1,
    ]
    assert (
        ak.argmin(cuda_v2_array2.to_typetracer(), axis=1, highlevel=False).form
        == ak.argmin(cuda_v2_array2, axis=1, highlevel=False).form
    )
    assert to_list(ak.argmin(cuda_v2_array2, axis=-1, highlevel=False)) == [
        2,
        0,
        None,
        2,
        1,
    ]
    assert (
        ak.argmin(cuda_v2_array2.to_typetracer(), axis=-1, highlevel=False).form
        == ak.argmin(cuda_v2_array2, axis=-1, highlevel=False).form
    )


def test_0070_argmin_and_argmax_missing():
    array = ak.operations.from_iter(
        [[[2.2, 1.1, 3.3]], [[]], [None, None, None], [[-4.4, -5.5, -6.6]]],
        highlevel=False,
    )

    cuda_array = ak.to_backend(array, "cuda", highlevel=False)

    assert to_list(ak.argmin(cuda_array, axis=2, highlevel=False)) == [
        [1],
        [None],
        [None, None, None],
        [2],
    ]
    assert (
        ak.argmin(cuda_array.to_typetracer(), axis=2, highlevel=False).form
        == ak.argmin(cuda_array, axis=2, highlevel=False).form
    )


def test_0115_generic_reducer_operation_ByteMaskedArray():
    content = ak.operations.from_iter(
        [
            [[1.1, 0.0, 2.2], [], [3.3, 4.4]],
            [],
            [[5.5]],
            [[6.6, 9.9, 8.8, 7.7]],
            [[], [12.2, 11.1, 10.0]],
        ],
        highlevel=False,
    )
    mask = ak.index.Index8(cp.array([0, 0, 1, 1, 0], dtype=cp.int8))
    content = ak.to_backend(content, "cuda", highlevel=False)

    cuda_v2_array = ak.contents.ByteMaskedArray(mask, content, valid_when=False)

    assert to_list(cuda_v2_array) == [
        [[1.1, 0.0, 2.2], [], [3.3, 4.4]],
        [],
        None,
        None,
        [[], [12.2, 11.1, 10.0]],
    ]
    assert to_list(ak.argmin(cuda_v2_array, axis=-1, highlevel=False)) == [
        [1, None, 0],
        [],
        None,
        None,
        [None, 2],
    ]
    assert (
        ak.argmin(cuda_v2_array.to_typetracer(), axis=-1, highlevel=False).form
        == ak.argmin(cuda_v2_array, axis=-1, highlevel=False).form
    )


@pytest.mark.parametrize(
    "func",
    [
        ak.argmin,
        ak.argmax,
    ],
)
def test_2754_highlevel_behavior_missing_reducers(func):
    behavior_1 = {"foo": "bar"}
    behavior_2 = {"baz": "bargh!"}

    array = ak.Array([[1, 2, 3, 4], [5], [10]])

    cuda_array = ak.to_backend(array, "cuda")

    assert isinstance(func(cuda_array, axis=1, highlevel=True), ak.Array)
    assert isinstance(func(cuda_array, axis=1, highlevel=False), ak.contents.Content)
    assert (
        func(
            ak.Array(cuda_array, behavior=behavior_1),
            axis=1,
            highlevel=True,
            behavior=behavior_2,
        ).behavior
        == behavior_2
    )
    assert (
        func(
            ak.Array(cuda_array, behavior=behavior_1),
            axis=1,
            highlevel=True,
        ).behavior
        == behavior_1
    )