File: test_3141_cuda_misc.py

package info (click to toggle)
python-awkward 2.8.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 24,932 kB
  • sloc: python: 178,875; cpp: 33,828; sh: 432; makefile: 21; javascript: 8
file content (162 lines) | stat: -rw-r--r-- 4,960 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from __future__ import annotations

import cupy as cp
import numpy as np
import pytest

import awkward as ak
from awkward.types import ArrayType, NumpyType, RegularType

to_list = ak.operations.to_list


@pytest.fixture(scope="function", autouse=True)
def cleanup_cuda():
    yield
    cp._default_memory_pool.free_all_blocks()
    cp.cuda.Device().synchronize()


def test_0150_ByteMaskedArray_flatten():
    content = ak.operations.from_iter(
        [
            [[0.0, 1.1, 2.2], [], [3.3, 4.4]],
            [],
            [[5.5]],
            [[6.6, 7.7, 8.8, 9.9]],
            [[], [10.0, 11.1, 12.2]],
        ],
        highlevel=False,
    )
    mask = ak.index.Index8(np.array([0, 0, 1, 1, 0], dtype=np.int8))
    array = ak.contents.ByteMaskedArray(mask, content, valid_when=False)
    cuda_array = ak.to_backend(array, "cuda")

    assert to_list(cuda_array) == [
        [[0.0, 1.1, 2.2], [], [3.3, 4.4]],
        [],
        None,
        None,
        [[], [10.0, 11.1, 12.2]],
    ]
    assert ak.operations.to_list(ak.operations.flatten(cuda_array, axis=1)) == [
        [0.0, 1.1, 2.2],
        [],
        [3.3, 4.4],
        [],
        [10.0, 11.1, 12.2],
    ]
    assert ak.operations.to_list(ak.operations.flatten(cuda_array, axis=-2)) == [
        [0.0, 1.1, 2.2],
        [],
        [3.3, 4.4],
        [],
        [10.0, 11.1, 12.2],
    ]
    assert ak.operations.to_list(ak.operations.flatten(cuda_array, axis=2)) == [
        [0.0, 1.1, 2.2, 3.3, 4.4],
        [],
        None,
        None,
        [10.0, 11.1, 12.2],
    ]
    assert ak.operations.to_list(ak.operations.flatten(cuda_array, axis=-1)) == [
        [0.0, 1.1, 2.2, 3.3, 4.4],
        [],
        None,
        None,
        [10.0, 11.1, 12.2],
    ]


def test_1586_should_preserve_regulararray_numpy_regular_axis1():
    a1 = ak.Array(np.array([[0.0, 1.1], [2.2, 3.3]]))
    a2 = ak.from_json("[[4.4, 5.5, 6.6], [7.7, 8.8, 9.9]]")
    cuda_a1 = ak.to_backend(a1, "cuda")
    assert isinstance(cuda_a1.layout, ak.contents.NumpyArray)

    a2 = ak.to_regular(a2, axis=1)
    cuda_a2 = ak.to_backend(a2, "cuda")

    c = ak.concatenate([cuda_a1, cuda_a2], axis=1)
    assert c.to_list() == [[0.0, 1.1, 4.4, 5.5, 6.6], [2.2, 3.3, 7.7, 8.8, 9.9]]
    assert c.type == ArrayType(RegularType(NumpyType("float64"), 5), 2)


def test_1586_should_preserve_regulararray_regular_numpy_axis1():
    a1 = ak.from_json("[[0.0, 1.1], [2.2, 3.3]]")
    a2 = ak.Array(np.array([[4.4, 5.5, 6.6], [7.7, 8.8, 9.9]]))

    cuda_a1 = ak.to_backend(a1, "cuda")
    cuda_a2 = ak.to_backend(a2, "cuda")

    cuda_a1 = ak.to_regular(cuda_a1, axis=1)

    assert isinstance(cuda_a2.layout, ak.contents.NumpyArray)
    c = ak.concatenate([cuda_a1, cuda_a2], axis=1)
    assert c.to_list() == [[0.0, 1.1, 4.4, 5.5, 6.6], [2.2, 3.3, 7.7, 8.8, 9.9]]
    assert c.type == ArrayType(RegularType(NumpyType("float64"), 5), 2)


def test_1586_should_preserve_regulararray_regular_regular_axis1():
    a1 = ak.from_json("[[0.0, 1.1], [2.2, 3.3]]")
    a2 = ak.from_json("[[4.4, 5.5, 6.6], [7.7, 8.8, 9.9]]")

    cuda_a1 = ak.to_backend(a1, "cuda")
    cuda_a2 = ak.to_backend(a2, "cuda")

    cuda_a1 = ak.to_regular(cuda_a1, axis=1)
    cuda_a2 = ak.to_regular(cuda_a2, axis=1)
    c = ak.concatenate([cuda_a1, cuda_a2], axis=1)
    assert c.to_list() == [[0.0, 1.1, 4.4, 5.5, 6.6], [2.2, 3.3, 7.7, 8.8, 9.9]]
    assert c.type == ArrayType(RegularType(NumpyType("float64"), 5), 2)


def test_0072_regulararray_fillna_unionarray():
    content1 = ak.operations.from_iter([[], [1.1], [2.2, 2.2]], highlevel=False)
    content2 = ak.operations.from_iter([["two", "two"], ["one"], []], highlevel=False)
    tags = ak.index.Index8(np.array([0, 1, 0, 1, 0, 1], dtype=np.int8))
    index = ak.index.Index64(np.array([0, 0, 1, 1, 2, 2], dtype=np.int64))
    array = ak.contents.UnionArray(tags, index, [content1, content2])
    cuda_array = ak.to_backend(array, "cuda")

    assert to_list(cuda_array) == [[], ["two", "two"], [1.1], ["one"], [2.2, 2.2], []]

    padded_array = ak._do.pad_none(array, 2, 1)
    assert to_list(padded_array) == [
        [None, None],
        ["two", "two"],
        [1.1, None],
        ["one", None],
        [2.2, 2.2],
        [None, None],
    ]

    value = ak.contents.NumpyArray(np.array([777]))

    assert to_list(ak._do.fill_none(padded_array, value)) == [
        [777, 777],
        ["two", "two"],
        [1.1, 777],
        ["one", 777],
        [2.2, 2.2],
        [777, 777],
    ]


def test_0590_allow_regulararray_size_zero_ListOffsetArray_rpad_and_clip():
    array = ak.highlevel.Array([[1, 2, 3], [], [4, 5]])
    assert ak.operations.pad_none(array, 0, clip=True).to_list() == [
        [],
        [],
        [],
    ]

    array = ak.highlevel.Array([[1, 2, 3], [], [4, 5]])
    cuda_array = ak.to_backend(array, "cuda")

    assert ak.operations.pad_none(cuda_array, 0).to_list() == [
        [1, 2, 3],
        [],
        [4, 5],
    ]