File: test_0652_tests_of_complex_numbers.py

package info (click to toggle)
python-awkward 2.8.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 24,932 kB
  • sloc: python: 178,875; cpp: 33,828; sh: 432; makefile: 21; javascript: 8
file content (258 lines) | stat: -rw-r--r-- 8,237 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward/blob/main/LICENSE

from __future__ import annotations

import json

import numpy as np
import pytest

import awkward as ak


def test_from_iter():
    assert ak.operations.from_iter([1 + 1j, 2 + 2j, 3 + 3j]).to_list() == [
        1 + 1j,
        2 + 2j,
        3 + 3j,
    ]
    assert ak.operations.from_iter([[1 + 1j, 2 + 2j], [], [3 + 3j]]).to_list() == [
        [1 + 1j, 2 + 2j],
        [],
        [3 + 3j],
    ]

    # First encounter of a complex number should promote previous integers and
    # reals into complex numbers:
    assert ak.operations.from_iter([1, 2.2, 3 + 3j]).to_list() == [
        1.0 + 0j,
        2.2 + 0j,
        3.0 + 3j,
    ]
    assert ak.operations.from_iter([1, 3 + 3j]).to_list() == [
        1.0 + 0j,
        3.0 + 3j,
    ]

    # Just as the first encounter of a real number promotes previous integers
    # into reals:
    assert str(ak.operations.from_iter([1, 2.2]).type) == "2 * float64"
    assert ak.operations.from_iter([1, 2.2]).to_list() == [1.0, 2.2]
    builder = ak.highlevel.ArrayBuilder()
    assert str(builder.type) == "0 * unknown"
    builder.integer(1)
    assert str(builder.type) == "1 * int64"
    builder.real(2.2)
    assert str(builder.type) == "2 * float64"

    # For that matter, ArrayBuilder is missing a high-level interface to complex:
    builder.complex(3 + 3j)
    assert str(builder.type) == "3 * complex128"


def test_from_json():
    array = ak.operations.from_json('[{"r": 1.1, "i": 1.0}, {"r": 2.2, "i": 2.0}]')
    assert array.to_list() == [
        {"r": 1.1, "i": 1.0},
        {"r": 2.2, "i": 2.0},
    ]
    array = ak.operations.from_json(
        '[{"r": 1.1, "i": 1.0}, {"r": 2.2, "i": 2.0}]', complex_record_fields=("r", "i")
    )
    assert array.to_list() == [(1.1 + 1j), (2.2 + 2j)]

    # Somewhere in from_json, a handler that turns integer record fields into
    # parts of a complex number is missing.
    array = ak.operations.from_json(
        '[{"r": 1, "i": 1}, {"r": 2, "i": 2}]', complex_record_fields=("r", "i")
    )
    assert array.to_list() == [(1 + 1j), (2 + 2j)]

    # This should fail with some message like "complex number fields must be numbers,"
    # not "called 'end_record' without 'begin_record' at the same level before it."
    with pytest.raises(ValueError):
        array = ak.operations.from_json(
            '[{"r": [], "i": 1}, {"r": [1, 2], "i": 2}]',
            complex_record_fields=("r", "i"),
        )

    # These shouldn't be recognized as complex number records because they have
    # only one of the two fields.
    assert ak.operations.from_json(
        '[{"r": 1}, {"r": 2}]', complex_record_fields=("r", "i")
    ).to_list() == [{"r": 1}, {"r": 2}]
    assert ak.operations.from_json(
        '[{"i": 1}, {"i": 2}]', complex_record_fields=("r", "i")
    ).to_list() == [{"i": 1}, {"i": 2}]
    assert ak.operations.from_json(
        '[{"r": 1.1}, {"r": 2.2}]', complex_record_fields=("r", "i")
    ).to_list() == [{"r": 1.1}, {"r": 2.2}]
    assert ak.operations.from_json(
        '[{"i": 1.1}, {"i": 2.2}]', complex_record_fields=("r", "i")
    ).to_list() == [{"i": 1.1}, {"i": 2.2}]

    # In this one, the extra field should simply be ignored. A record with *at least*
    # the two specified fields should be recognized as a complex number, so that
    # the protocol can include a type marker, as some protocols do.
    array = ak.operations.from_json(
        '[{"r": 1.1, "i": 1.0, "another": []}, {"r": 2.2, "i": 2.0, "another": [1, 2, 3]}]',
        complex_record_fields=("r", "i"),
    )
    assert array.to_list() == [(1.1 + 1j), (2.2 + 2j)]


def test_to_json():
    # Complex numbers can't be converted to JSON without setting 'complex_record_fields',
    # but the error messages should refer to that name now. (I changed the name at
    # high-level, but not in the error messages emitted by C++ code.)
    with pytest.raises(TypeError) as err:
        ak.operations.to_json(ak.operations.from_iter([1 + 1j, 2 + 2j, 3 + 3j]))
    assert "not JSON serializable" in str(err)

    expectation = [{"r": 1.0, "i": 1.0}, {"r": 2.0, "i": 2.0}, {"r": 3.0, "i": 3.0}]
    assert expectation == json.loads(
        ak.operations.to_json(
            ak.operations.from_iter([1 + 1j, 2 + 2j, 3 + 3j]),
            complex_record_fields=("r", "i"),
        )
    )
    expectation = [
        [{"r": 1.0, "i": 1.0}, {"r": 2.0, "i": 2.0}],
        [],
        [{"r": 3.0, "i": 3.0}],
    ]
    assert expectation == json.loads(
        ak.operations.to_json(
            ak.operations.from_iter([[1 + 1j, 2 + 2j], [], [3 + 3j]]),
            complex_record_fields=("r", "i"),
        )
    )


def test_reducers():
    assert (
        ak.operations.sum(ak.operations.from_iter([[1 + 1j, 2 + 2j], [], [3 + 3j]]))
        == 6 + 6j
    )
    assert (
        ak.operations.prod(ak.operations.from_iter([[1 + 1j, 2 + 2j], [], [3 + 3j]]))
        == -12 + 12j
    )

    assert ak.operations.sum(
        ak.operations.from_iter([[1 + 1j, 2 + 2j], [], [3 + 3j]]), axis=1
    ).to_list() == [
        3 + 3j,
        0 + 0j,
        3 + 3j,
    ]
    assert ak.operations.prod(
        ak.operations.from_iter([[1 + 1j, 2 + 2j], [], [3 + 3j]]), axis=1
    ).to_list() == [
        0 + 4j,
        1 + 0j,
        3 + 3j,
    ]

    assert ak.operations.count(
        ak.operations.from_iter([[1 + 1j, 2 + 2j], [], [3 + 3j]]), axis=1
    ).to_list() == [2, 0, 1]
    assert ak.operations.count_nonzero(
        ak.operations.from_iter([[1 + 1j, 2 + 2j], [], [3 + 3j]]), axis=1
    ).to_list() == [2, 0, 1]
    assert ak.operations.any(
        ak.operations.from_iter([[1 + 1j, 2 + 2j], [], [3 + 3j]]), axis=1
    ).to_list() == [
        True,
        False,
        True,
    ]
    assert ak.operations.all(
        ak.operations.from_iter([[1 + 1j, 2 + 2j], [], [3 + 3j]]), axis=1
    ).to_list() == [
        True,
        True,
        True,
    ]
    assert ak.operations.any(
        ak.operations.from_iter([[1 + 1j, 2 + 2j, 0 + 0j], [], [3 + 3j]]),
        axis=1,
    ).to_list() == [True, False, True]
    assert ak.operations.all(
        ak.operations.from_iter([[1 + 1j, 2 + 2j, 0 + 0j], [], [3 + 3j]]),
        axis=1,
    ).to_list() == [False, True, True]


def test_minmax():
    assert (
        ak.operations.min(ak.operations.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]]))
        == 1 + 5j
    )
    assert (
        ak.operations.max(ak.operations.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]]))
        == 3 + 3j
    )

    assert ak.operations.min(
        ak.operations.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]]), axis=1
    ).to_list() == [
        1 + 5j,
        None,
        3 + 3j,
    ]
    assert ak.operations.max(
        ak.operations.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]]), axis=1
    ).to_list() == [
        2 + 4j,
        None,
        3 + 3j,
    ]

    assert ak.operations.argmin(
        ak.operations.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]]), axis=1
    ).to_list() == [0, None, 0]
    assert ak.operations.argmax(
        ak.operations.from_iter([[1 + 5j, 2 + 4j], [], [3 + 3j]]), axis=1
    ).to_list() == [1, None, 0]


@pytest.mark.skip(reason="Remember to implement sorting for complex numbers.")
def test_sort():
    assert ak.operations.sort(
        ak.operations.from_iter([[2 + 4j, 1 + 5j], [], [3 + 3j]])
    ).to_list() == [
        [1 + 5j, 2 + 4j],
        [],
        [3 + 3j],
    ]
    assert ak.operations.argsort(
        ak.operations.from_iter([[2 + 4j, 1 + 5j], [], [3 + 3j]])
    ).to_list() == [
        [1, 0],
        [],
        [0],
    ]


def test_numpy():
    assert np.array_equal(
        ak.operations.to_numpy(
            ak.operations.from_iter([[1 + 1j, 2 + 2j], [3 + 3j, 4 + 4j]])
        ),
        np.array([[1 + 1j, 2 + 2j], [3 + 3j, 4 + 4j]]),
    )
    assert (
        str(
            ak.operations.to_numpy(
                ak.operations.from_iter([[1 + 1j, 2 + 2j], [3 + 3j, 4 + 4j]])
            ).dtype
        )
        == "complex128"
    )
    assert ak.highlevel.Array(
        np.array([[1 + 1j, 2 + 2j], [3 + 3j, 4 + 4j]])
    ).to_list() == [
        [(1 + 1j), (2 + 2j)],
        [(3 + 3j), (4 + 4j)],
    ]