File: test_1490_jax_reducers_combinations.py

package info (click to toggle)
python-awkward 2.8.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 24,932 kB
  • sloc: python: 178,875; cpp: 33,828; sh: 432; makefile: 21; javascript: 8
file content (169 lines) | stat: -rw-r--r-- 5,333 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward/blob/main/LICENSE

from __future__ import annotations

import numpy as np
import numpy.testing
import pytest

import awkward as ak

jax = pytest.importorskip("jax")
jax.config.update("jax_platform_name", "cpu")

ak.jax.register_and_check()

# #### ak.contents.NumpyArray ####


test_regulararray = ak.Array(
    [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], backend="jax"
)
test_regulararray_tangent = ak.Array(
    [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], backend="jax"
)

test_regulararray_jax = jax.numpy.array(
    [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=np.float64
)
test_regulararray_tangent_jax = jax.numpy.array(
    [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=np.float64
)


@pytest.mark.parametrize("axis", [0, 1, None])
@pytest.mark.parametrize(
    "func_ak", [ak.sum, ak.prod, ak.min, ak.max, ak.mean, ak.prod, ak.ptp, ak.std]
)
def test_reducer(func_ak, axis):
    func_jax = getattr(jax.numpy, func_ak.__name__)

    def func_ak_with_axis(x):
        return func_ak(x, axis=axis)

    def func_jax_with_axis(x):
        return func_jax(x, axis=axis)

    value_jvp, jvp_grad = jax.jvp(
        func_ak_with_axis, (test_regulararray,), (test_regulararray_tangent,)
    )
    value_jvp_jax, jvp_grad_jax = jax.jvp(
        func_jax_with_axis, (test_regulararray_jax,), (test_regulararray_tangent_jax,)
    )

    value_vjp, vjp_func = jax.vjp(func_ak_with_axis, test_regulararray)
    value_vjp_jax, vjp_func_jax = jax.vjp(func_jax_with_axis, test_regulararray_jax)

    numpy.testing.assert_allclose(
        ak.to_list(value_jvp), value_jvp_jax.tolist(), rtol=1e-9, atol=1e-9
    )
    numpy.testing.assert_allclose(
        ak.to_list(value_vjp), value_vjp_jax.tolist(), rtol=1e-9, atol=1e-9
    )
    numpy.testing.assert_allclose(
        ak.to_list(jvp_grad), jvp_grad_jax.tolist(), rtol=1e-9, atol=1e-9
    )
    numpy.testing.assert_allclose(
        ak.to_list(vjp_func(value_vjp)[0]),
        (vjp_func_jax(value_vjp_jax)[0]).tolist(),
        rtol=1e-9,
        atol=1e-9,
    )


@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("func_ak", [ak.sort])
def test_sort(func_ak, axis):
    def func_ak_with_axis(x):
        return func_ak(x, axis=axis)

    match = r".*This kernel is not differentiable by the JAX backend.*"
    with pytest.raises(ValueError, match=match):
        value_jvp, jvp_grad = jax.jvp(
            func_ak_with_axis, (test_regulararray,), (test_regulararray_tangent,)
        )
    with pytest.raises(ValueError, match=match):
        value_vjp, vjp_func = jax.vjp(func_ak_with_axis, test_regulararray)


@pytest.mark.parametrize("func_ak", [ak.ravel])
def test_ravel(func_ak):
    func_jax = getattr(jax.numpy, func_ak.__name__)

    def func_ak_no_axis(x):
        return func_ak(x)

    def func_jax_no_axis(x):
        return func_jax(x)

    value_jvp, jvp_grad = jax.jvp(
        func_ak_no_axis, (test_regulararray,), (test_regulararray_tangent,)
    )
    value_jvp_jax, jvp_grad_jax = jax.jvp(
        func_jax_no_axis, (test_regulararray_jax,), (test_regulararray_tangent_jax,)
    )

    value_vjp, vjp_func = jax.vjp(func_ak_no_axis, test_regulararray)
    value_vjp_jax, vjp_func_jax = jax.vjp(func_jax_no_axis, test_regulararray_jax)

    numpy.testing.assert_allclose(
        ak.to_list(value_jvp), value_jvp_jax.tolist(), rtol=1e-9, atol=1e-9
    )
    numpy.testing.assert_allclose(
        ak.to_list(value_vjp), value_vjp_jax.tolist(), rtol=1e-9, atol=1e-9
    )
    numpy.testing.assert_allclose(
        ak.to_list(jvp_grad), jvp_grad_jax.tolist(), rtol=1e-9, atol=1e-9
    )
    numpy.testing.assert_allclose(
        ak.to_list(vjp_func(value_vjp)[0]),
        (vjp_func_jax(value_vjp_jax)[0]).tolist(),
        rtol=1e-9,
        atol=1e-9,
    )


@pytest.mark.parametrize("axis", [None])
@pytest.mark.parametrize("func_ak", [ak.any, ak.all])
def test_bool_returns(func_ak, axis):
    func_jax = getattr(jax.numpy, func_ak.__name__)

    def func_ak_with_axis(x):
        return func_ak(x, axis=axis)

    def func_jax_with_axis(x):
        return func_jax(x, axis=axis)

    value_jvp, jvp_grad = jax.jvp(
        func_ak_with_axis, (test_regulararray,), (test_regulararray_tangent,)
    )
    value_jvp_jax, jvp_grad_jax = jax.jvp(
        func_jax_with_axis, (test_regulararray_jax,), (test_regulararray_tangent_jax,)
    )

    value_vjp, vjp_func = jax.vjp(func_ak_with_axis, test_regulararray)
    value_vjp_jax, vjp_func_jax = jax.vjp(func_jax_with_axis, test_regulararray_jax)

    assert jvp_grad.dtype == jvp_grad_jax.dtype

    assert value_jvp.tolist() == value_jvp_jax.tolist()
    assert value_vjp.tolist() == value_vjp_jax.tolist()

    numpy.testing.assert_allclose(
        ak.to_list(vjp_func(value_vjp)[0]),
        (vjp_func_jax(value_vjp_jax)[0]).tolist(),
        rtol=1e-9,
        atol=1e-9,
    )


@pytest.mark.parametrize("axis", [0, 1, -1])
@pytest.mark.parametrize("func_ak", [ak.any, ak.all])
def test_bool_raises(func_ak, axis):
    def func_with_axis(x):
        return func_ak(x, axis=axis)

    with pytest.raises(
        TypeError, match=".*Make sure that you are not computing the derivative.*"
    ):
        jax.jvp(func_with_axis, (test_regulararray,), (test_regulararray_tangent,))