1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward/blob/main/LICENSE
# ruff: noqa: E402
from __future__ import annotations
import io
import os
import numpy as np
import pytest
pa = pytest.importorskip("pyarrow")
pq = pytest.importorskip("pyarrow.parquet")
import awkward as ak
from awkward._connect.pyarrow.table_conv import (
AWKWARD_INFO_KEY,
array_with_replacement_type,
awkward_arrow_field_to_native,
collect_ak_arr_type_metadata,
convert_awkward_arrow_table_to_native,
convert_native_arrow_table_to_awkward,
native_arrow_field_to_akarraytype,
)
from awkward.operations import to_list
nested_ints = ak.Array([[[[[1, 2, 3], [], [4, 5]] * 5] * 3] * 2])
struct_array = ak.Array(
[
{"lbl": "item 1", "idx": 11, "ids": [1, 2, 3]},
{"lbl": "item 2", "idx": 12, "ids": [51, 52]},
{"lbl": "item 3", "idx": 13, "ids": [61, 62, 63, 64]},
],
with_name="my_items",
)
with_nulls = ak.Array([[11, None], [23], None])
option_types = ak.Array(
[[1, 2], [[10, 11, None], None, [3, 4, 5], ["one", "two"]], None]
)
(indexed, indexed_tuple) = (
# Unique for this test, contains nested types within the
ak.contents.IndexedArray(
ak.index.Index64(np.array([2, 1, 0], dtype=np.uint64)),
ak.contents.RecordArray(
[
ak.contents.ByteMaskedArray(
ak.index.Index8(np.array([False, True, False]).view(np.int8)),
ak.contents.NumpyArray(np.array([1.1, 2.2, 3.3])),
valid_when=False,
),
ak.contents.UnmaskedArray(
ak.contents.ListOffsetArray(
ak.index.Index32(np.array([0, 3, 3, 5], dtype=np.int32)),
ak.contents.NumpyArray(
np.array([1.1, 2.2, 3.3, 4.4, 5.5]),
),
),
),
],
None if is_tuple else ["x", "y"],
),
parameters={"__array__": "categorical", "foo": "thap"},
)
for is_tuple in (False, True)
)
(records, records_tuple) = (
ak.contents.RecordArray(
[
ak.contents.NumpyArray(
np.array([1.1, 2.2, 3.3]), parameters={"foo": "inner1"}
),
ak.contents.ListOffsetArray(
ak.index.Index32(np.array([0, 3, 3, 5], dtype=np.int32)),
ak.contents.NumpyArray(
np.array([1.1, 2.2, 3.3, 4.4, 5.5]), parameters={"foo": "inner2"}
),
),
],
None if is_tuple else ["x", "y"],
parameters={"foo": "outer"},
)
for is_tuple in (False, True)
)
@pytest.mark.parametrize(
"akarray, as_dict",
[
(nested_ints, False),
(struct_array, False),
(with_nulls, False),
(option_types, False),
(indexed, True),
(indexed_tuple, True),
(records, True),
(records_tuple, True),
(indexed, False),
(indexed_tuple, False),
(records, False),
(records_tuple, False),
],
)
def test_array_conversions(akarray, as_dict):
arrow_natv = ak.to_arrow(
akarray, categorical_as_dictionary=as_dict, extensionarray=False
)
arrow_extn = ak.to_arrow(
akarray, categorical_as_dictionary=as_dict, extensionarray=True
)
extn_field = pa.field("test_field", arrow_extn.type)
# Convert to native pyarrow types:
metadata = collect_ak_arr_type_metadata(extn_field)
conv_natv_field = awkward_arrow_field_to_native(extn_field)
assert conv_natv_field.type == arrow_natv.type
as_natv = array_with_replacement_type(arrow_extn, conv_natv_field.type)
assert as_natv == arrow_natv
# Complete a round-trip, back to AwkwardArrowArray
conv_extn_field = native_arrow_field_to_akarraytype(conv_natv_field, metadata)
assert conv_extn_field.type == arrow_extn.type
assert (
conv_extn_field.type._metadata_as_dict() == arrow_extn.type._metadata_as_dict()
)
conv_metadata = collect_ak_arr_type_metadata(conv_extn_field)
assert conv_metadata == metadata
# assert_equal_arrowextntypes(conv_extn_field.type, arrow_extn.type)
as_extn = array_with_replacement_type(as_natv, conv_extn_field.type)
assert as_extn == arrow_extn
assert as_extn.type._metadata_as_dict() == arrow_extn.type._metadata_as_dict()
# And back to Awkward array
rt_array = ak.from_arrow(as_extn, highlevel=True)
assert to_list(rt_array) == to_list(akarray)
# Deeper test of types
akarray_high = ak.Array(akarray)
if akarray_high.type.content.parameters.get("__categorical__", False) == as_dict:
# as_dict is supposed to go hand-in-hand with __categorical__: True, and if it
# does not, we do not round-trip perfectly. So only test when this is set correctly.
assert rt_array.type == akarray_high.type
ak_type_str_orig = io.StringIO()
ak_type_str_rtrp = io.StringIO()
akarray_high.type.show(stream=ak_type_str_orig)
rt_array.type.show(stream=ak_type_str_rtrp)
if ak_type_str_orig.getvalue() != ak_type_str_rtrp.getvalue():
print(" Original type:", ak_type_str_orig.getvalue())
print(" Rnd-trip type:", ak_type_str_rtrp.getvalue())
assert ak_type_str_orig.getvalue() == ak_type_str_rtrp.getvalue()
def test_table_conversion():
ak_tbl_like = ak.Array(
{
"struct_array": struct_array,
"with_nulls": with_nulls,
"option_types": option_types,
"indexed": indexed,
}
)
natv_tbl = ak.to_arrow_table(
ak_tbl_like, categorical_as_dictionary=True, extensionarray=False
)
extn_tbl = ak.to_arrow_table(
ak_tbl_like, categorical_as_dictionary=True, extensionarray=True
)
conv_natv_tbl = convert_awkward_arrow_table_to_native(extn_tbl)
assert (
conv_natv_tbl.schema == natv_tbl.schema
) # This comparison does not include metadata
assert conv_natv_tbl == natv_tbl
assert AWKWARD_INFO_KEY in conv_natv_tbl.schema.metadata
assert len(conv_natv_tbl["struct_array"].chunks[0].field(2).buffers()) == 4
# This verifies that our conversions are zero-copy for the table data
assert (
extn_tbl["struct_array"].chunks[0].storage.field(2).buffers()[3].address
== conv_natv_tbl["struct_array"].chunks[0].field(2).buffers()[3].address
)
conv_extn_tbl = convert_native_arrow_table_to_awkward(conv_natv_tbl)
assert conv_extn_tbl.schema == extn_tbl.schema
assert conv_extn_tbl == extn_tbl # Full Round-trip verification
assert AWKWARD_INFO_KEY not in conv_extn_tbl.schema.metadata
assert (
extn_tbl["struct_array"].chunks[0].storage.field(2).buffers()[3].address
== conv_extn_tbl["struct_array"].chunks[0].storage.field(2).buffers()[3].address
)
def test_selective_parquet(tmp_path):
filename = os.path.join(tmp_path, "whatever.parquet")
ak_tbl = ak.Array(
{
"with_nulls": with_nulls,
"struct_array": struct_array,
"indexed": indexed,
}
)
ak.to_parquet(ak_tbl, filename)
tbl_tr = ak.from_parquet(filename, columns=["struct_array", "indexed"])
assert to_list(tbl_tr["struct_array"]) == to_list(ak_tbl["struct_array"])
@pytest.mark.parametrize("doit", [False, True])
def test_empty(tmp_path, doit):
filename = os.path.join(tmp_path, "whatever.parquet")
ak.to_parquet(ak.Array([{"x": 1, "y": 1.1}])[0:0], filename, extensionarray=doit)
assert str(ak.from_parquet(filename).type) == "0 * {x: int64, y: float64}"
|