1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward/blob/main/LICENSE
from __future__ import annotations
import numpy as np
import pytest
import awkward as ak
jax = pytest.importorskip("jax")
ak.jax.register_and_check()
# Define all reducers to test
REDUCERS = [
(ak.argmin, {}),
(ak.argmax, {}),
(ak.min, {}),
(ak.max, {}),
(ak.sum, {}),
(ak.prod, {"mask_identity": True}), # mask_identity for prod to handle empty arrays
(ak.any, {}),
(ak.all, {}),
(ak.count, {}),
(ak.count_nonzero, {}),
]
# Define test arrays (single jagged)
SINGLE_JAGGED = [
# Normal array
[[1, 2, 3], [4, 5], [6, 7, 8, 9]],
# Array with first empty
[[], [1, 2], [3, 4, 5]],
# Array with middle empty
[[1, 2], [], [3, 4, 5]],
# Array with last empty
[[1, 2], [3, 4, 5], []],
# Array with multiple empty elements
[[], [1, 2], [], [3, 4], []],
# Array with negative numbers
[[-1, -2], [-3], [4, 5, -6]],
# Array with zeros
[[0, 0], [1, 0], [2, 3, 4]],
]
# Define test arrays (double jagged)
DOUBLE_JAGGED = [
# Normal double jagged array
[[[1, 2], [3]], [[4, 5, 6]], [[7], [8, 9]]],
# Double jagged with empty at first level
[[], [[1, 2], [3, 4]], [[5, 6]]],
# Double jagged with empty at second level
[[[1, 2], []], [[3, 4], [5]], [[6]]],
# Double jagged with various empty elements
[[[]], [[], [1, 2]], [[], [], [3, 4]]],
# Double jagged with negative numbers
[[[-1, -2], [-3]], [[4, 5, -6]], [[7], [-8, 9]]],
# Double jagged with zeros
[[[0, 0], [1]], [[2, 3]], [[4], [5, 6]]],
]
# Define axes to test
AXES = [1, None] # axis=1 for first dimension, None for flattened reduction
DOUBLE_JAGGED_AXES = [1, 2, None] # axis=1 and axis=2 for double jagged
RTOL = 1e-5 # Relative tolerance for floating point comparison
ATOL = 1e-8 # Absolute tolerance for floating point comparison
def compare_results(cpu_list, jax_list):
"""Compare results with tolerance for numeric values."""
if isinstance(cpu_list, (int, float)) and isinstance(jax_list, (int, float)):
# Direct numeric comparison with tolerance
np.testing.assert_allclose(cpu_list, jax_list, rtol=RTOL, atol=ATOL)
elif isinstance(cpu_list, list) and isinstance(jax_list, list):
# Lists should have the same length
assert len(cpu_list) == len(jax_list), (
f"Lists have different lengths: {len(cpu_list)} vs {len(jax_list)}"
)
# Compare each element
for cpu_item, jax_item in zip(cpu_list, jax_list):
compare_results(cpu_item, jax_item)
else:
# For non-numeric types, use exact equality
assert cpu_list == jax_list
@pytest.mark.parametrize("reducer,kwargs", REDUCERS)
@pytest.mark.parametrize("arr", SINGLE_JAGGED)
@pytest.mark.parametrize("axis", AXES)
def test_single_jagged_arrays(reducer, kwargs, arr, axis):
"""Test reducers on single jagged arrays with different axes."""
# Create arrays with different backends
cpu_array = ak.Array(arr, backend="cpu")
jax_array = ak.Array(arr, backend="jax")
# Apply reducers to each backend's array
cpu_result = reducer(cpu_array, axis=axis, **kwargs)
jax_result = reducer(jax_array, axis=axis, **kwargs)
# Convert to lists for comparison
cpu_list = ak.to_list(cpu_result)
jax_list = ak.to_list(jax_result)
# Handle case where axis=None might result in different structures
if axis is None:
# If one result is a scalar and the other is a list with one element
if (
not isinstance(cpu_list, list)
and isinstance(jax_list, list)
and len(jax_list) == 1
):
jax_list = jax_list[0]
elif (
isinstance(cpu_list, list)
and not isinstance(jax_list, list)
and len(cpu_list) == 1
):
cpu_list = cpu_list[0]
# Compare with tolerance for numeric values
compare_results(cpu_list, jax_list)
@pytest.mark.parametrize("reducer,kwargs", REDUCERS)
@pytest.mark.parametrize("arr", DOUBLE_JAGGED)
@pytest.mark.parametrize("axis", DOUBLE_JAGGED_AXES)
def test_double_jagged_arrays(reducer, kwargs, arr, axis):
"""Test reducers on double jagged arrays with different axes."""
# Create arrays with different backends
cpu_array = ak.Array(arr, backend="cpu")
jax_array = ak.Array(arr, backend="jax")
# Apply reducers to each backend's array
cpu_result = reducer(cpu_array, axis=axis, **kwargs)
jax_result = reducer(jax_array, axis=axis, **kwargs)
# Convert to lists for comparison
cpu_list = ak.to_list(cpu_result)
jax_list = ak.to_list(jax_result)
# Handle case where axis=None might result in different structures
if axis is None:
# If one result is a scalar and the other is a list with one element
if (
not isinstance(cpu_list, list)
and isinstance(jax_list, list)
and len(jax_list) == 1
):
jax_list = jax_list[0]
elif (
isinstance(cpu_list, list)
and not isinstance(jax_list, list)
and len(cpu_list) == 1
):
cpu_list = cpu_list[0]
# Compare with tolerance for numeric values
compare_results(cpu_list, jax_list)
# Additional edge cases
@pytest.mark.parametrize("reducer,kwargs", REDUCERS)
def test_all_empty_arrays(reducer, kwargs):
"""Test with arrays that are entirely empty."""
all_empty_data = [[], [], []]
cpu_array = ak.Array(all_empty_data, backend="cpu")
jax_array = ak.Array(all_empty_data, backend="jax")
cpu_result = reducer(cpu_array, axis=1, **kwargs)
jax_result = reducer(jax_array, axis=1, **kwargs)
# Convert to lists for comparison
cpu_list = ak.to_list(cpu_result)
jax_list = ak.to_list(jax_result)
# Handle case where one might be a scalar and the other a list
if (
not isinstance(cpu_list, list)
and isinstance(jax_list, list)
and len(jax_list) == 1
):
jax_list = jax_list[0]
elif (
isinstance(cpu_list, list)
and not isinstance(jax_list, list)
and len(cpu_list) == 1
):
cpu_list = cpu_list[0]
# Compare with tolerance for numeric values
compare_results(cpu_list, jax_list)
# Test with boolean values
@pytest.mark.parametrize("reducer,kwargs", REDUCERS)
def test_boolean_arrays(reducer, kwargs):
"""Test with boolean arrays."""
bool_data = [[True, False], [], [True, True, False], [False]]
cpu_array = ak.Array(bool_data, backend="cpu")
jax_array = ak.Array(bool_data, backend="jax")
cpu_result = reducer(cpu_array, axis=1, **kwargs)
jax_result = reducer(jax_array, axis=1, **kwargs)
# Convert to lists for comparison
cpu_list = ak.to_list(cpu_result)
jax_list = ak.to_list(jax_result)
# Handle case where one might be a scalar and the other a list
if (
not isinstance(cpu_list, list)
and isinstance(jax_list, list)
and len(jax_list) == 1
):
jax_list = jax_list[0]
elif (
isinstance(cpu_list, list)
and not isinstance(jax_list, list)
and len(cpu_list) == 1
):
cpu_list = cpu_list[0]
# Compare with tolerance for numeric values
compare_results(cpu_list, jax_list)
# Test with None values
@pytest.mark.parametrize("reducer,kwargs", REDUCERS)
def test_none_arrays(reducer, kwargs):
"""Test with arrays containing None values."""
none_data = [[None, 1], [2, None], [None, None], [3, 4]]
cpu_array = ak.Array(none_data, backend="cpu")
jax_array = ak.Array(none_data, backend="jax")
cpu_result = reducer(cpu_array, axis=1, **kwargs)
jax_result = reducer(jax_array, axis=1, **kwargs)
# Convert to lists for comparison
cpu_list = ak.to_list(cpu_result)
jax_list = ak.to_list(jax_result)
# Handle case where one might be a scalar and the other a list
if (
not isinstance(cpu_list, list)
and isinstance(jax_list, list)
and len(jax_list) == 1
):
jax_list = jax_list[0]
elif (
isinstance(cpu_list, list)
and not isinstance(jax_list, list)
and len(cpu_list) == 1
):
cpu_list = cpu_list[0]
# Compare with tolerance for numeric values
compare_results(cpu_list, jax_list)
# test with NaN values
@pytest.mark.skip(
reason="(arg)min/max and any do not work with NaNs in the jax backend"
)
@pytest.mark.parametrize("reducer,kwargs", REDUCERS)
def test_nan_arrays(reducer, kwargs):
"""Test with arrays containing NaN values."""
nan_data = [[np.nan, 1], [2, np.nan], [np.nan, np.nan], [3, 4]]
cpu_array = ak.Array(nan_data, backend="cpu")
jax_array = ak.Array(nan_data, backend="jax")
cpu_result = reducer(cpu_array, axis=1, **kwargs)
jax_result = reducer(jax_array, axis=1, **kwargs)
# Convert to lists for comparison
cpu_list = ak.to_list(cpu_result)
jax_list = ak.to_list(jax_result)
# Handle case where one might be a scalar and the other a list
if (
not isinstance(cpu_list, list)
and isinstance(jax_list, list)
and len(jax_list) == 1
):
jax_list = jax_list[0]
elif (
isinstance(cpu_list, list)
and not isinstance(jax_list, list)
and len(cpu_list) == 1
):
cpu_list = cpu_list[0]
# Compare with tolerance for numeric values
compare_results(cpu_list, jax_list)
|