File: test_3749_cuda_backend_sort.py

package info (click to toggle)
python-awkward 2.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,360 kB
  • sloc: python: 187,941; cpp: 33,672; sh: 432; ansic: 256; makefile: 21; javascript: 8
file content (131 lines) | stat: -rw-r--r-- 4,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward/blob/main/LICENSE

from __future__ import annotations

import numpy as np
import pytest

import awkward as ak

to_list = ak.operations.to_list


def test_sort_cuda_basic():
    data = ak.Array([[7, 5, 7], [], [2], [8, 2]])
    gpu_data = ak.to_backend(data, "cuda")
    gpu_sorted = ak.sort(gpu_data)
    result = ak.to_backend(gpu_sorted, "cpu")

    assert to_list(result) == [[5, 7, 7], [], [2], [2, 8]]


def test_sort_cuda_descending():
    data = ak.Array([[3, 1, 2], [5, 4], [], [6]])
    gpu_data = ak.to_backend(data, "cuda")
    gpu_sorted = ak.sort(gpu_data, ascending=False)
    result = ak.to_backend(gpu_sorted, "cpu")

    assert to_list(result) == [[3, 2, 1], [5, 4], [], [6]]


def test_sort_cuda_float():
    data = ak.Array([[3.5, 1.2, 2.8], [5.1, 4.9], [], [6.0]])
    gpu_data = ak.to_backend(data, "cuda")
    gpu_sorted = ak.sort(gpu_data)
    result = ak.to_backend(gpu_sorted, "cpu")

    expected = [[1.2, 2.8, 3.5], [4.9, 5.1], [], [6.0]]
    result_list = to_list(result)

    # Compare with tolerance for floats
    assert len(result_list) == len(expected)
    for res_sublist, exp_sublist in zip(result_list, expected, strict=True):
        assert len(res_sublist) == len(exp_sublist)
        for res_val, exp_val in zip(res_sublist, exp_sublist, strict=True):
            assert abs(res_val - exp_val) < 1e-10


def test_sort_cuda_large():
    # Create random data
    np.random.seed(42)
    data_list = []
    for _ in range(100):
        size = np.random.randint(0, 50)
        if size > 0:
            data_list.append(np.random.randint(0, 100, size).tolist())
        else:
            data_list.append([])

    data = ak.Array(data_list)
    cpu_sorted = ak.sort(data)

    gpu_data = ak.to_backend(data, "cuda")
    gpu_sorted = ak.sort(gpu_data)
    result = ak.to_backend(gpu_sorted, "cpu")

    assert to_list(result) == to_list(cpu_sorted)


def test_sort_cuda_nested():
    data = ak.Array([[[3, 1, 2], [5, 4]], [[9, 7, 8]], [[6]]])
    cpu_sorted = ak.sort(data, axis=-1)

    gpu_data = ak.to_backend(data, "cuda")
    gpu_sorted = ak.sort(gpu_data, axis=-1)
    result = ak.to_backend(gpu_sorted, "cpu")

    assert to_list(result) == to_list(cpu_sorted)
    assert to_list(result) == [[[1, 2, 3], [4, 5]], [[7, 8, 9]], [[6]]]


def test_sort_cuda_deeply_nested():
    data = ak.Array([[[[5, 2, 8], [1, 3]], [[4, 6]]], [[[9, 7]]]])
    cpu_sorted = ak.sort(data, axis=-1)

    gpu_data = ak.to_backend(data, "cuda")
    gpu_sorted = ak.sort(gpu_data, axis=-1)
    result = ak.to_backend(gpu_sorted, "cpu")

    assert to_list(result) == to_list(cpu_sorted)
    assert to_list(result) == [[[[2, 5, 8], [1, 3]], [[4, 6]]], [[[7, 9]]]]


def test_sort_cuda_unsupported_axis():
    """Test that sorting at unsupported axes fails with clear error."""
    # Sorting at axis=-2 requires CuPy kernels that don't exist
    # This should fail with an AssertionError indicating missing kernels
    data = ak.Array([[[7, 2, 3], [4, 5, 6]]])
    gpu_data = ak.to_backend(data, "cuda")

    # axis=-1 should work (our cuda.compute implementation)
    sorted_axis_minus1 = ak.sort(gpu_data, axis=-1)
    result = ak.to_backend(sorted_axis_minus1, "cpu")
    assert to_list(result) == [[[2, 3, 7], [4, 5, 6]]]

    # axis=-2 should fail (requires CuPy kernels not available)
    with pytest.raises(
        AssertionError,
        match=r"(CuPyKernel not found|Operation .* is not supported)",
    ):
        ak.sort(gpu_data, axis=-2)


def test_sort_cuda_no_compute():
    """Test that helpful error is raised when cuda.compute is not available."""
    from awkward._connect.cuda import _compute as cuda_compute

    original_available = cuda_compute._cuda_compute_available

    try:
        # Temporarily make cuda.compute unavailable
        cuda_compute._cuda_compute_available = False

        data = ak.Array([[7, 5, 7], [], [2], [8, 2]])
        gpu_data = ak.to_backend(data, "cuda")

        with pytest.raises(NotImplementedError, match=r"cuda\.compute"):
            ak.sort(gpu_data)

    finally:
        # Restore original state
        cuda_compute._cuda_compute_available = original_available