1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
# coding: utf-8
#-------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#--------------------------------------------------------------------------
import unittest
import time
from datetime import datetime, date, timedelta
from azure.mgmt.datafactory import DataFactoryManagementClient
from azure.mgmt.datafactory.models import *
from devtools_testutils import AzureMgmtTestCase, ResourceGroupPreparer
# import logging
# logging.basicConfig(level=logging.DEBUG)
class MgmtAdfTest(AzureMgmtTestCase):
def setUp(self):
super(MgmtAdfTest, self).setUp()
self._adf_client = self.create_mgmt_client(
DataFactoryManagementClient,
base_url='https://api-dogfood.resources.windows-int.net/'
)
def clean_datafactory(self, df_name, resource_group):
self._adf_client.factories.delete(resource_group.name, df_name)
def create_datafactory(self, df_name, resource_group, location):
df_resource = Factory(location=location)
return self._adf_client.factories.create_or_update(resource_group.name, df_name, df_resource)
def create_azureblob_linkedservice(self, df_name, ls_name, resource_group):
s = SecureString('some connection string')
ls_as = AzureStorageLinkedService(connection_string=s)
return self._adf_client.linked_services.create_or_update(resource_group.name, df_name, ls_name, ls_as)
def create_azureblob_dataset(self, df_name, ls_name, ds_name, resource_group):
tx_f = TextFormat()
ls_for_ds = LinkedServiceReference(ls_name)
ds_ab = AzureBlobDataset(ls_for_ds, format=tx_f)
return self._adf_client.datasets.create_or_update(resource_group.name, df_name, ds_name, ds_ab)
def create_output_dataset(self, df_name, ls_name, ds_name, resource_group):
tx_f = TextFormat()
fileName_expr=Expression("'OutputBlobName'")
ls_for_ds = LinkedServiceReference(ls_name)
ds_ab = AzureBlobDataset(ls_for_ds, folder_path='entitylogs', file_name='OutputBlobName', format=tx_f)
return self._adf_client.datasets.create_or_update(resource_group.name, df_name, ds_name, ds_ab)
def create_pipeline_with_run(self, df_name, p_name, ls_name, dsin_name, dsout_name, act_name, resource_group):
ls = self.create_azureblob_linkedservice(df_name, ls_name, resource_group)
dsin = self.create_azureblob_dataset(df_name, ls_name, dsin_name, resource_group)
dsout = self.create_output_dataset(df_name, ls_name, dsout_name, resource_group)
act = self.create_copyactivity_blobtoblob(act_name, dsin_name, dsout_name, resource_group)
param = ParameterSpecification('String')
p_params = {'OutputBlobName': param}
self.create_pipeline(df_name, [act], p_name, p_params, resource_group)
return self._adf_client.pipelines.create_run(resource_group.name, df_name, p_name,
{
"OutputBlobName": "adf1"
}
)
def create_lookup_pipeline_with_run(self, df_name, p_name, ls_name, ds_name, act_name, resource_group):
ls = self.create_azureblob_linkedservice(df_name, ls_name, resource_group)
ds = self.create_azureblob_dataset(df_name, ls_name, ds_name, resource_group)
act = self.create_lookupactivity_blob(act_name, ds_name)
param = ParameterSpecification('String')
p_params = {'Dummy': param}
self.create_pipeline(df_name, [act], p_name, p_params, resource_group)
return self._adf_client.pipelines.create_run(resource_group.name, df_name, p_name,
{
"Dummy": "dummy"
}
)
def create_get_metadata_pipeline_with_run(self, df_name, p_name, ls_name, ds_name, act_name, resource_group):
ls = self.create_azureblob_linkedservice(df_name, ls_name, resource_group)
ds = self.create_azureblob_dataset(df_name, ls_name, ds_name, resource_group)
act = self.create_getmetadataactivity_blob(act_name, ds_name)
param = ParameterSpecification('String')
p_params = {'Dummy': param}
self.create_pipeline(df_name, [act], p_name, p_params, resource_group)
return self._adf_client.pipelines.create_run(resource_group.name, df_name, p_name,
{
"Dummy": "dummy"
}
)
def wait_for_factory(self, df, resource_group):
if not self.is_playback():
while df.provisioning_state != 'Succeeded':
df = self._adf_client.factories.get(resource_group.name, df.name)
time.sleep(1)
def create_copyactivity_blobtoblob(self, act_name, dsin_name, dsout_name, resource_group):
bso = BlobSource()
bsi = BlobSink()
dsin_ref = DatasetReference(dsin_name)
dsOut_ref = DatasetReference(dsout_name)
return CopyActivity(act_name, inputs=[dsin_ref], outputs=[dsOut_ref], source=bso, sink=bsi)
def create_lookupactivity_blob(self, act_name, ds_name):
bso = BlobSource()
ds_ref = DatasetReference(ds_name)
return LookupActivity(act_name, source=bso, dataset=ds_ref)
def create_getmetadataactivity_blob(self, act_name, ds_name):
ds_ref = DatasetReference(ds_name)
return GetMetadataActivity(act_name, field_list = [], dataset=ds_ref)
def create_pipeline(self, df_name, act, p_name, p_params, resource_group):
p_obj = PipelineResource(activities=act, parameters=p_params)
return self._adf_client.pipelines.create_or_update(resource_group.name, df_name, p_name, p_obj)
def create_integrationruntime(self, df_name, ir_name, resource_group):
ir_properties = SelfHostedIntegrationRuntime()
return self._adf_client.integration_runtimes.create_or_update(resource_group.name, df_name, ir_name, ir_properties)
@ResourceGroupPreparer(location='eastus2', name_prefix='adfpythontests')
def test_datafactory_create(self, resource_group, location):
df_name = 'testdfcreate'
df = self.create_datafactory(df_name, resource_group, location)
df1 = self._adf_client.factories.get(resource_group.name, df_name)
self.assertTrue(df.id == df1.id)
self.wait_for_factory(df, resource_group)
self.clean_datafactory(df_name, resource_group)
@ResourceGroupPreparer(location='eastus2', name_prefix='adfpythontests')
def test_get_nonexisitng_datafactory(self, resource_group, location):
df_name = 'testdfnonexist'
exceptionhappened = False
try:
df = self._adf_client.factories.get(resource_group.name, df_name)
except ErrorResponseException:
exceptionhappened = True
self.assertTrue(exceptionhappened)
@ResourceGroupPreparer(location='eastus2', name_prefix='adfpythontests')
def test_dataset_create(self, resource_group, location):
df_name = 'testdscreate'
ls_name = 'ls1'
ds_name = 'ds1'
df = self.create_datafactory(df_name, resource_group, location)
self.wait_for_factory(df, resource_group)
ls = self.create_azureblob_linkedservice(df_name, ls_name, resource_group)
ds = self.create_azureblob_dataset(df_name, ls_name, ds_name, resource_group)
ds1 = self._adf_client.datasets.get(resource_group.name, df_name, ds_name)
self.assertTrue(ds.id == ds1.id)
self.clean_datafactory(df_name, resource_group)
@ResourceGroupPreparer(location='eastus2', name_prefix='adfpythontests')
def test_pipeline_create(self, resource_group, location):
df_name = 'testpipelinecreate'
ls_name = 'ls1'
dsin_name = 'dsin'
dsout_name = 'dsout'
act_name = 'act1'
p_name = 'p1'
df = self.create_datafactory(df_name, resource_group, location)
self.wait_for_factory(df, resource_group)
run = self.create_pipeline_with_run(df_name, p_name, ls_name, dsin_name, dsout_name, act_name, resource_group)
self.assertTrue(run is not None)
self.clean_datafactory(df_name, resource_group)
@ResourceGroupPreparer(location='eastus2', name_prefix='adfpythontests')
def test_lookup_pipeline_create(self, resource_group, location):
df_name = 'testlookuppipeline'
ls_name = 'ls1'
ds_name = 'ds1'
act_name = 'act1'
p_name = 'p1'
df = self.create_datafactory(df_name, resource_group, location)
self.wait_for_factory(df, resource_group)
run = self.create_lookup_pipeline_with_run(df_name, p_name, ls_name, ds_name, act_name, resource_group)
self.assertTrue(run is not None)
self.clean_datafactory(df_name, resource_group)
@ResourceGroupPreparer(location='eastus2', name_prefix='adfpythontests')
def test_get_metadata_pipeline_create(self, resource_group, location):
df_name = 'testmetadatapipeline'
ls_name = 'ls1'
ds_name = 'ds1'
act_name = 'act1'
p_name = 'p1'
df = self.create_datafactory(df_name, resource_group, location)
self.wait_for_factory(df, resource_group)
run = self.create_get_metadata_pipeline_with_run(df_name, p_name, ls_name, ds_name, act_name, resource_group)
self.assertTrue(run is not None)
self.clean_datafactory(df_name, resource_group)
@ResourceGroupPreparer(location='eastus2', name_prefix='adfpythontests')
def test_run_monitoring(self, resource_group, location):
df_name = 'testmonitoring'
ls_name = 'ls'
dsin_name = 'dsin'
dsout_name = 'dsout'
act_name = 'act1'
p_name = 'p1'
start_time = datetime(2017, 9, 10, 12, 0, 0)
end_time = (start_time + timedelta(days=3600))
df = self.create_datafactory(df_name, resource_group, location)
self.wait_for_factory(df, resource_group)
run = self.create_pipeline_with_run(df_name, p_name, ls_name, dsin_name, dsout_name, act_name, resource_group)
query_max_count = 10
i = 0
while True and i < query_max_count:
filter = PipelineRunFilterParameters(start_time.isoformat(), end_time.isoformat(), filters=[])
pipeline_runs = self._adf_client.pipeline_runs.query_by_factory(resource_group.name, df_name, filter).value
if pipeline_runs:
break
time.sleep(15)
i += 1
self.assertTrue(any(elt.run_id == run.run_id for elt in pipeline_runs))
i = 0
while True and i < query_max_count:
act_runs = list(self._adf_client.activity_runs.list_by_pipeline_run(resource_group.name, df_name, run.run_id, start_time.isoformat(), end_time.isoformat()))
if act_runs:
break
time.sleep(15)
i += 1
self.assertTrue(any(elt.pipeline_run_id == run.run_id for elt in act_runs))
self.clean_datafactory(df_name, resource_group)
@ResourceGroupPreparer(location='eastus2', name_prefix='adfpythontests')
def test_integrationruntime_regeneratekey(self, resource_group, location):
df_name = 'testirregeneratekey'
ir_name = 'ir1'
df = self.create_datafactory(df_name, resource_group, location)
self.wait_for_factory(df, resource_group)
ir = self.create_integrationruntime(df_name, ir_name, resource_group)
oldkey = self._adf_client.integration_runtimes.list_auth_keys(resource_group.name, df_name, ir_name).auth_key1
newkey = self._adf_client.integration_runtimes.regenerate_auth_key(resource_group.name, df_name, ir_name, key_name='authKey1').auth_key1
self.assertTrue(oldkey != newkey)
self.clean_datafactory(df_name, resource_group)
@ResourceGroupPreparer(location='eastus2', name_prefix='adfpythontests')
def test_integrationruntime_create(self, resource_group, location):
df_name = "testircreate"
ir_name = "ir1"
df = self.create_datafactory(df_name, resource_group, location)
self.wait_for_factory(df, resource_group)
ir = self.create_integrationruntime(df_name, ir_name, resource_group)
self.assertTrue(ir_name == ir.name)
ir_status = self._adf_client.integration_runtimes.get_status(resource_group.name, df_name, ir_name)
self.assertTrue(ir_name == ir_status.name)
self.clean_datafactory(df_name, resource_group)
if __name__ == '__main__':
unittest.main()
|