File: metric_criteria.py

package info (click to toggle)
python-azure 20181112%2Bgit-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 407,300 kB
  • sloc: python: 717,190; makefile: 201; sh: 76
file content (63 lines) | stat: -rw-r--r-- 2,530 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is
# regenerated.
# --------------------------------------------------------------------------

from msrest.serialization import Model


class MetricCriteria(Model):
    """MetricCriteria.

    All required parameters must be populated in order to send to Azure.

    :param name: Required. Name of the criteria.
    :type name: str
    :param metric_name: Required. Name of the metric.
    :type metric_name: str
    :param metric_namespace: Namespace of the metric.
    :type metric_namespace: str
    :param operator: Required. the criteria operator.
    :type operator: object
    :param time_aggregation: Required. the criteria time aggregation types.
    :type time_aggregation: object
    :param threshold: Required. the criteria threshold value that activates
     the alert.
    :type threshold: float
    :param dimensions: List of dimension conditions.
    :type dimensions: list[~azure.mgmt.monitor.models.MetricDimension]
    """

    _validation = {
        'name': {'required': True},
        'metric_name': {'required': True},
        'operator': {'required': True},
        'time_aggregation': {'required': True},
        'threshold': {'required': True},
    }

    _attribute_map = {
        'name': {'key': 'name', 'type': 'str'},
        'metric_name': {'key': 'metricName', 'type': 'str'},
        'metric_namespace': {'key': 'metricNamespace', 'type': 'str'},
        'operator': {'key': 'operator', 'type': 'object'},
        'time_aggregation': {'key': 'timeAggregation', 'type': 'object'},
        'threshold': {'key': 'threshold', 'type': 'float'},
        'dimensions': {'key': 'dimensions', 'type': '[MetricDimension]'},
    }

    def __init__(self, **kwargs):
        super(MetricCriteria, self).__init__(**kwargs)
        self.name = kwargs.get('name', None)
        self.metric_name = kwargs.get('metric_name', None)
        self.metric_namespace = kwargs.get('metric_namespace', None)
        self.operator = kwargs.get('operator', None)
        self.time_aggregation = kwargs.get('time_aggregation', None)
        self.threshold = kwargs.get('threshold', None)
        self.dimensions = kwargs.get('dimensions', None)