File: README.md

package info (click to toggle)
python-azure 20201208%2Bgit-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,437,920 kB
  • sloc: python: 4,287,452; javascript: 269; makefile: 198; sh: 187; xml: 106
file content (538 lines) | stat: -rw-r--r-- 18,531 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# Azure Metrics Advisor client library for Python
Metrics Advisor is a scalable real-time time series monitoring, alerting, and root cause analysis platform. Use Metrics Advisor to:

- Analyze multi-dimensional data from multiple data sources
- Identify and correlate anomalies
- Configure and fine-tune the anomaly detection model used on your data
- Diagnose anomalies and help with root cause analysis

[Source code][src_code] | [Package (Pypi)][package] | [API reference documentation][reference_documentation] | [Product documentation][ma_docs] | [Samples][samples_readme]

## Getting started

### Install the package

Install the Azure Metrics Advisor client library for Python with pip:

```commandline
pip install azure-ai-metricsadvisor --pre
```

### Prerequisites

* Python 2.7, or 3.5 or later is required to use this package.
* You need an [Azure subscription][azure_sub], and a [Metrics Advisor serivce][ma_service] to use this package.

### Authenticate the client

You will need two keys to authenticate the client:

1) The subscription key to your Metrics Advisor resource. You can find this in the Keys and Endpoint section of your resource in the Azure portal.
2) The API key for your Metrics Advisor instance. You can find this in the web portal for Metrics Advisor, in API keys on the left navigation menu.

We can use the keys to create a new `MetricsAdvisorClient` or `MetricsAdvisorAdministrationClient`.

```py
import os
from azure.ai.metricsadvisor import (
    MetricsAdvisorKeyCredential,
    MetricsAdvisorClient,
    MetricsAdvisorAdministrationClient,
)

service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")

client = MetricsAdvisorClient(service_endpoint,
                            MetricsAdvisorKeyCredential(subscription_key, api_key))

admin_client = MetricsAdvisorAdministrationClient(service_endpoint,
                            MetricsAdvisorKeyCredential(subscription_key, api_key))
```

## Key concepts

### MetricsAdvisorClient

`MetricsAdvisorClient` helps with:

- listing incidents
- listing root causes of incidents
- retrieving original time series data and time series data enriched by the service.
- listing alerts
- adding feedback to tune your model

### MetricsAdvisorAdministrationClient

`MetricsAdvisorAdministrationClient` allows you to

- manage data feeds
- manage anomaly detection configurations
- manage anomaly alerting configurations
- manage hooks

### DataFeed

A `DataFeed` is what Metrics Advisor ingests from your data source, such as Cosmos DB or a SQL server. A data feed contains rows of:

- timestamps
- zero or more dimensions
- one or more measures

### Metric

A `DataFeedMetric` is a quantifiable measure that is used to monitor and assess the status of a specific business process. It can be a combination of multiple time series values divided into dimensions. For example a web health metric might contain dimensions for user count and the en-us market.

### AnomalyDetectionConfiguration

`AnomalyDetectionConfiguration` is required for every time series, and determines whether a point in the time series is an anomaly. 

### Anomaly & Incident

After a detection configuration is applied to metrics, `AnomalyIncident`s are generated whenever any series within it has an `DataPointAnomaly`.

### Alert

You can configure which anomalies should trigger an `AnomalyAlert`. You can set multiple alerts with different settings. For example, you could create an alert for anomalies with lower business impact, and another for more important alerts.

### Notification Hook

Metrics Advisor lets you create and subscribe to real-time alerts. These alerts are sent over the internet, using a notification hook like `EmailNotificationHook` or `WebNotificationHook`.

## Examples

* [Add a data feed from a sample or data source](#add-a-data-feed-from-a-sample-or-data-source "Add a data feed from a sample or data source")
* [Check ingestion status](#check-ingestion-status "Check ingestion status")
* [Configure anomaly detection configuration](#configure-anomaly-detection-configuration "Configure anomaly detection configuration")
* [Configure alert configuration](#configure-alert-configuration "Configure alert configuration")
* [Query anomaly detection results](#query-anomaly-detection-results "Query anomaly detection results")
* [Query incidents](#query-incidents "Query incidents")
* [Query root causes](#query-root-causes "Query root causes")
* [Add hooks for receiving anomaly alerts](#add-hooks-for-receiving-anomaly-alerts "Add hooks for receiving anomaly alerts")

### Add a data feed from a sample or data source

Metrics Advisor supports connecting different types of data sources. Here is a sample to ingest data from SQL Server.

```py
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
        SQLServerDataFeed,
        DataFeedSchema,
        DataFeedMetric,
        DataFeedDimension,
        DataFeedOptions,
        DataFeedRollupSettings,
    )

service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
sql_server_connection_string = os.getenv("SQL_SERVER_CONNECTION_STRING")
query = os.getenv("SQL_SERVER_QUERY")

client = MetricsAdvisorAdministrationClient(
    service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

data_feed = client.create_data_feed(
    name="My data feed",
    source=SQLServerDataFeed(
        connection_string=sql_server_connection_string,
        query=query,
    ),
    granularity="Daily",
    schema=DataFeedSchema(
        metrics=[
            DataFeedMetric(name="cost", display_name="Cost"),
            DataFeedMetric(name="revenue", display_name="Revenue")
        ],
        dimensions=[
            DataFeedDimension(name="category", display_name="Category"),
            DataFeedDimension(name="city", display_name="City")
        ],
        timestamp_column="Timestamp"
    ),
    ingestion_settings=datetime.datetime(2019, 10, 1),
    options=DataFeedOptions(
        data_feed_description="cost/revenue data feed",
        rollup_settings=DataFeedRollupSettings(
            rollup_type="AutoRollup",
            rollup_method="Sum",
            rollup_identification_value="__CUSTOM_SUM__"
        ),
        missing_data_point_fill_settings=DataFeedMissingDataPointFillSettings(
            fill_type="SmartFilling"
        ),
        access_mode="Private"
    )
)

return data_feed
```

### Check ingestion status

After we start the data ingestion, we can check the ingestion status.

```py
import datetime
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient

service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
data_feed_id = os.getenv("DATA_FEED_ID")

client = MetricsAdvisorAdministrationClient(service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

ingestion_status = client.list_data_feed_ingestion_status(
    data_feed_id,
    datetime.datetime(2020, 9, 20),
    datetime.datetime(2020, 9, 25)
)
for status in ingestion_status:
    print("Timestamp: {}".format(status.timestamp))
    print("Status: {}".format(status.status))
    print("Message: {}\n".format(status.message))
```

### Configure anomaly detection configuration

While a default detection configuration is automatically applied to each metric, we can tune the detection modes used on our data by creating a customized anomaly detection configuration.

```py
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
    ChangeThresholdCondition,
    HardThresholdCondition,
    SmartDetectionCondition,
    SuppressCondition,
    MetricDetectionCondition,
)

service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
metric_id = os.getenv("METRIC_ID")

client = MetricsAdvisorAdministrationClient(
    service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

change_threshold_condition = ChangeThresholdCondition(
    anomaly_detector_direction="Both",
    change_percentage=20,
    shift_point=10,
    within_range=True,
    suppress_condition=SuppressCondition(
        min_number=5,
        min_ratio=2
    )
)
hard_threshold_condition = HardThresholdCondition(
    anomaly_detector_direction="Up",
    upper_bound=100,
    suppress_condition=SuppressCondition(
        min_number=2,
        min_ratio=2
    )
)
smart_detection_condition = SmartDetectionCondition(
    anomaly_detector_direction="Up",
    sensitivity=10,
    suppress_condition=SuppressCondition(
        min_number=2,
        min_ratio=2
    )
)

detection_config = client.create_detection_configuration(
    name="my_detection_config",
    metric_id=metric_id,
    description="anomaly detection config for metric",
    whole_series_detection_condition=MetricDetectionCondition(
        cross_conditions_operator="OR",
        change_threshold_condition=change_threshold_condition,
        hard_threshold_condition=hard_threshold_condition,
        smart_detection_condition=smart_detection_condition
    )
)
return detection_config
```

### Configure alert configuration

Then let's configure in which conditions an alert needs to be triggered.

```py
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
    MetricAlertConfiguration,
    MetricAnomalyAlertScope,
    TopNGroupScope,
    MetricAnomalyAlertConditions,
    SeverityCondition,
    MetricBoundaryCondition,
    MetricAnomalyAlertSnoozeCondition,
)
service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
anomaly_detection_configuration_id = os.getenv("DETECTION_CONFIGURATION_ID")
hook_id = os.getenv("HOOK_ID")

client = MetricsAdvisorAdministrationClient(
    service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

alert_config = client.create_alert_configuration(
    name="my alert config",
    description="alert config description",
    cross_metrics_operator="AND",
    metric_alert_configurations=[
        MetricAlertConfiguration(
            detection_configuration_id=anomaly_detection_configuration_id,
            alert_scope=MetricAnomalyAlertScope(
                scope_type="WholeSeries"
            ),
            alert_conditions=MetricAnomalyAlertConditions(
                severity_condition=SeverityCondition(
                    min_alert_severity="Low",
                    max_alert_severity="High"
                )
            )
        ),
        MetricAlertConfiguration(
            detection_configuration_id=anomaly_detection_configuration_id,
            alert_scope=MetricAnomalyAlertScope(
                scope_type="TopN",
                top_n_group_in_scope=TopNGroupScope(
                    top=10,
                    period=5,
                    min_top_count=5
                )
            ),
            alert_conditions=MetricAnomalyAlertConditions(
                metric_boundary_condition=MetricBoundaryCondition(
                    direction="Up",
                    upper=50
                )
            ),
            alert_snooze_condition=MetricAnomalyAlertSnoozeCondition(
                auto_snooze=2,
                snooze_scope="Metric",
                only_for_successive=True
            )
        ),
    ],
    hook_ids=[hook_id]
)

return alert_config
```

### Query anomaly detection results

We can query the alerts and anomalies.

```py
import datetime
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient

service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
alert_config_id = os.getenv("ALERT_CONFIG_ID")
alert_id = os.getenv("ALERT_ID")

client = MetricsAdvisorClient(service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

results = client.list_alerts(
    alert_configuration_id=alert_config_id,
    start_time=datetime.datetime(2020, 1, 1),
    end_time=datetime.datetime(2020, 9, 9),
    time_mode="AnomalyTime",
)
for result in results:
    print("Alert id: {}".format(result.id))
    print("Create on: {}".format(result.created_on))

results = client.list_anomalies(
    alert_configuration_id=alert_config_id,
    alert_id=alert_id,
)
for result in results:
    print("Create on: {}".format(result.created_on))
    print("Severity: {}".format(result.severity))
    print("Status: {}".format(result.status))
```

### Query incidents

We can query the incidents for a detection configuration.

```py
import datetime
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient

service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
anomaly_detection_configuration_id = os.getenv("DETECTION_CONFIGURATION_ID")

client = MetricsAdvisorClient(service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

results = client.list_incidents(
            detection_configuration_id=anomaly_detection_configuration_id,
            start_time=datetime.datetime(2020, 1, 1),
            end_time=datetime.datetime(2020, 9, 9),
        )
for result in results:
    print("Metric id: {}".format(result.metric_id))
    print("Incident ID: {}".format(result.id))
    print("Severity: {}".format(result.severity))
    print("Status: {}".format(result.status))
```

### Query root causes

We can also query the root causes of an incident

```py
import datetime
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient

service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
anomaly_detection_configuration_id = os.getenv("DETECTION_CONFIGURATION_ID")
incident_id = os.getenv("INCIDENT_ID")

client = MetricsAdvisorClient(service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

results = client.list_incident_root_causes(
            detection_configuration_id=anomaly_detection_configuration_id,
            incident_id=incident_id,
        )
for result in results:
    print("Score: {}".format(result.score))
    print("Description: {}".format(result.description))

```


### Add hooks for receiving anomaly alerts

We can add some hooks so when an alert is triggered, we can get call back.

```py
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import EmailNotificationHook

service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")

client = MetricsAdvisorAdministrationClient(service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key))

hook = client.create_hook(
    hook=EmailNotificationHook(
        name="email hook",
        description="my email hook",
        emails_to_alert=["alertme@alertme.com"],
        external_link="https://docs.microsoft.com/en-us/azure/cognitive-services/metrics-advisor/how-tos/alerts"
    )
)
```

### Async APIs

This library includes a complete async API supported on Python 3.5+. To use it, you must
first install an async transport, such as [aiohttp](https://pypi.org/project/aiohttp/).
See
[azure-core documentation][azure_core_docs]
for more information.


```py
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential
from azure.ai.metricsadvisor.aio import MetricsAdvisorClient, MetricsAdvisorAdministrationClient

client = MetricsAdvisorClient(
    service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

admin_client = MetricsAdvisorAdministrationClient(
    service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)
```

## Troubleshooting

### General

The Azure Metrics Advisor clients will raise exceptions defined in [Azure Core][azure_core].

### Logging
This library uses the standard
[logging][python_logging] library for logging.

Basic information about HTTP sessions (URLs, headers, etc.) is logged at `INFO` level.

Detailed `DEBUG` level logging, including request/response bodies and **unredacted**
headers, can be enabled on the client or per-operation with the `logging_enable` keyword argument.

See full SDK logging documentation with examples [here][sdk_logging_docs].

## Next steps

### More sample code

 For more details see the [samples README][samples_readme].

## Contributing

This project welcomes contributions and suggestions.  Most contributions require
you to agree to a Contributor License Agreement (CLA) declaring that you have
the right to, and actually do, grant us the rights to use your contribution. For
details, visit [cla.microsoft.com][cla].

This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct].
For more information see the [Code of Conduct FAQ][coc_faq]
or contact [opencode@microsoft.com][coc_contact] with any
additional questions or comments.

<!-- LINKS -->
[src_code]: https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/metricsadvisor/azure-ai-metricsadvisor
[reference_documentation]: https://aka.ms/azsdk/python/metricsadvisor/docs
[ma_docs]: https://docs.microsoft.com/azure/cognitive-services/metrics-advisor/overview
[azure_cli]: https://docs.microsoft.com/cli/azure
[azure_sub]: https://azure.microsoft.com/free/
[package]: https://aka.ms/azsdk/python/metricsadvisor/pypi
[ma_service]: https://go.microsoft.com/fwlink/?linkid=2142156
[python_logging]: https://docs.python.org/3.5/library/logging.html
[azure_core]: https://aka.ms/azsdk/python/core/docs#module-azure.core.exceptions
[azure_core_docs]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/core/azure-core/README.md#transport
[sdk_logging_docs]: https://docs.microsoft.com/azure/developer/python/azure-sdk-logging
[samples_readme]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/metricsadvisor/azure-ai-metricsadvisor/samples/README.md

[cla]: https://cla.microsoft.com
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
[coc_contact]: mailto:opencode@microsoft.com