1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
# Azure Text Analytics client library for Python
Text Analytics is a cloud-based service that provides advanced natural language processing over raw text, and includes six main functions:
* Sentiment Analysis
* Named Entity Recognition
* Linked Entity Recognition
* Personally Identifiable Information (PII) Entity Recognition
* Language Detection
* Key Phrase Extraction
* Healthcare Analysis (Gated Preview)
[Source code][source_code] | [Package (PyPI)][TA_pypi] | [API reference documentation][TA_ref_docs]| [Product documentation][TA_product_documentation] | [Samples][TA_samples]
## Getting started
### Prerequisites
* Python 2.7, or 3.5 or later is required to use this package.
* You must have an [Azure subscription][azure_subscription] and a
[Cognitive Services or Text Analytics resource][TA_or_CS_resource] to use this package.
#### Create a Cognitive Services or Text Analytics resource
Text Analytics supports both [multi-service and single-service access][multi_and_single_service].
Create a Cognitive Services resource if you plan to access multiple cognitive services under a single endpoint/key. For Text Analytics access only, create a Text Analytics resource.
You can create the resource using
**Option 1:** [Azure Portal][azure_portal_create_TA_resource]
**Option 2:** [Azure CLI][azure_cli_create_TA_resource].
Below is an example of how you can create a Text Analytics resource using the CLI:
```bash
# Create a new resource group to hold the text analytics resource -
# if using an existing resource group, skip this step
az group create --name my-resource-group --location westus2
```
```bash
# Create text analytics
az cognitiveservices account create \
--name text-analytics-resource \
--resource-group my-resource-group \
--kind TextAnalytics \
--sku F0 \
--location westus2 \
--yes
```
Interaction with this service begins with an instance of a [client](#textanalyticsclient "TextAnalyticsClient").
To create a client object, you will need the cognitive services or text analytics `endpoint` to
your resource and a `credential` that allows you access:
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
text_analytics_client = TextAnalyticsClient(endpoint="https://<region>.api.cognitive.microsoft.com/", credential=credential)
```
Note that if you create a [custom subdomain][cognitive_custom_subdomain]
name for your resource the endpoint may look different than in the above code snippet.
For example, `https://<my-custom-subdomain>.cognitiveservices.azure.com/`.
### Install the package
Install the Azure Text Analytics client library for Python with [pip][pip]:
```bash
pip install azure-ai-textanalytics --pre
```
> Note: This version of the client library defaults to the v3.1-preview version of the service
This table shows the relationship between SDK versions and supported API versions of the service
|SDK version|Supported API version of service
|-|-
|5.0.0 - Latest GA release (can be installed by removing the `--pre` flag)| 3.0
|5.1.0b3 - Latest release (beta)| 3.0, 3.1-preview.2, 3.1-preview.3
### Authenticate the client
#### Get the endpoint
You can find the endpoint for your text analytics resource using the
[Azure Portal][azure_portal_get_endpoint]
or [Azure CLI][azure_cli_endpoint_lookup]:
```bash
# Get the endpoint for the text analytics resource
az cognitiveservices account show --name "resource-name" --resource-group "resource-group-name" --query "properties.endpoint"
```
#### Get the API Key
You can get the [API key][cognitive_authentication_api_key] from the Cognitive Services or Text Analytics resource in the [Azure Portal][azure_portal_get_endpoint].
Alternatively, you can use [Azure CLI][azure_cli_endpoint_lookup] snippet below to get the API key of your resource.
```az cognitiveservices account keys list --name "resource-name" --resource-group "resource-group-name"```
#### Create a TextAnalyticsClient with an API Key Credential
Once you have the value for the API key, you can pass it as a string into an instance of [AzureKeyCredential][azure-key-credential]. Use the key as the credential parameter
to authenticate the client:
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
text_analytics_client = TextAnalyticsClient(endpoint="https://<region>.api.cognitive.microsoft.com/", credential=credential)
```
#### Create a TextAnalyticsClient with an Azure Active Directory Credential
To use an [Azure Active Directory (AAD) token credential][cognitive_authentication_aad],
provide an instance of the desired credential type obtained from the
[azure-identity][azure_identity_credentials] library.
Note that regional endpoints do not support AAD authentication. Create a [custom subdomain][custom_subdomain]
name for your resource in order to use this type of authentication.
Authentication with AAD requires some initial setup:
* [Install azure-identity][install_azure_identity]
* [Register a new AAD application][register_aad_app]
* [Grant access][grant_role_access] to Text Analytics by assigning the `"Cognitive Services User"` role to your service principal.
After setup, you can choose which type of [credential][azure_identity_credentials] from azure.identity to use.
As an example, [DefaultAzureCredential][default_azure_credential]
can be used to authenticate the client:
Set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables:
AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET
Use the returned token credential to authenticate the client:
```python
from azure.ai.textanalytics import TextAnalyticsClient
from azure.identity import DefaultAzureCredential
credential = DefaultAzureCredential()
text_analytics_client = TextAnalyticsClient(endpoint="https://<my-custom-subdomain>.api.cognitive.microsoft.com/", credential=credential)
```
## Key concepts
### TextAnalyticsClient
The Text Analytics client library provides a [TextAnalyticsClient][text_analytics_client] to do analysis on [batches of documents](#examples "Examples").
It provides both synchronous and asynchronous operations to access a specific use of Text Analytics, such as language detection or key phrase extraction.
### Input
A **document** is a single unit to be analyzed by the predictive models in the Text Analytics service.
The input for each operation is passed as a **list** of documents.
Each document can be passed as a string in the list, e.g.
```python
documents = ["I hated the movie. It was so slow!", "The movie made it into my top ten favorites. What a great movie!"]
```
or, if you wish to pass in a per-item document `id` or `language`/`country_hint`, they can be passed as a list of
[DetectLanguageInput][detect_language_input] or
[TextDocumentInput][text_document_input]
or a dict-like representation of the object:
```python
documents = [
{"id": "1", "language": "en", "text": "I hated the movie. It was so slow!"},
{"id": "2", "language": "en", "text": "The movie made it into my top ten favorites. What a great movie!"},
]
```
See [service limitations][service_limits] for the input, including document length limits, maximum batch size, and supported text encoding.
### Return Value
The return value for a single document can be a result or error object.
A heterogeneous list containing a collection of result and error objects is returned from each operation.
These results/errors are index-matched with the order of the provided documents.
A **result**, such as [AnalyzeSentimentResult][analyze_sentiment_result],
is the result of a Text Analytics operation and contains a prediction or predictions about a document input.
The **error** object, [DocumentError][document_error], indicates that the service had trouble processing the document and contains
the reason it was unsuccessful.
### Document Error Handling
You can filter for a result or error object in the list by using the `is_error` attribute. For a result object this is always `False` and for a
[DocumentError][document_error] this is `True`.
For example, to filter out all DocumentErrors you might use list comprehension:
```python
response = text_analytics_client.analyze_sentiment(documents)
successful_responses = [doc for doc in response if not doc.is_error]
```
### Long-Running Operations
Long-running operations are operations which consist of an initial request sent to the service to start an operation,
followed by polling the service at intervals to determine whether the operation has completed or failed, and if it has
succeeded, to get the result.
Methods that support Healthcare Analysis or batch operations over multiple Text Analytics APIs are modeled as long-running operations.
The client exposes a `begin_<method-name>` method that returns an `LROPoller` or `AsyncLROPoller`. Callers should wait
for the operation to complete by calling `result()` on the poller object returned from the `begin_<method-name>` method.
Sample code snippets are provided to illustrate using long-running operations [below](#examples "Examples").
## Examples
The following section provides several code snippets covering some of the most common Text Analytics tasks, including:
* [Analyze Sentiment](#analyze-sentiment "Analyze sentiment")
* [Recognize Entities](#recognize-entities "Recognize entities")
* [Recognize Linked Entities](#recognize-linked-entities "Recognize linked entities")
* [Recognize PII Entities](#recognize-pii-entities "Recognize pii entities")
* [Extract Key Phrases](#extract-key-phrases "Extract key phrases")
* [Detect Language](#detect-language "Detect language")
* [Healthcare Analysis](#healthcare-analysis "Healthcare analysis")
* [Batch Analysis](#batch-analysis "Batch analysis")
### Analyze sentiment
[analyze_sentiment][analyze_sentiment] looks at its input text and determines whether its sentiment is positive, negative, neutral or mixed. It's response includes per-sentence sentiment analysis and confidence scores.
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
endpoint="https://<region>.api.cognitive.microsoft.com/"
text_analytics_client = TextAnalyticsClient(endpoint, credential)
documents = [
"I did not like the restaurant. The food was somehow both too spicy and underseasoned. Additionally, I thought the location was too far away from the playhouse.",
"The restaurant was decorated beautifully. The atmosphere was unlike any other restaurant I've been to.",
"The food was yummy. :)"
]
response = text_analytics_client.analyze_sentiment(documents, language="en")
result = [doc for doc in response if not doc.is_error]
for doc in result:
print("Overall sentiment: {}".format(doc.sentiment))
print("Scores: positive={}; neutral={}; negative={} \n".format(
doc.confidence_scores.positive,
doc.confidence_scores.neutral,
doc.confidence_scores.negative,
))
```
The returned response is a heterogeneous list of result and error objects: list[[AnalyzeSentimentResult][analyze_sentiment_result], [DocumentError][document_error]]
Please refer to the service documentation for a conceptual discussion of [sentiment analysis][sentiment_analysis]. To see how to conduct more granular analysis into the opinions related to individual aspects (such as attributes of a product or service) in a text, see [here][opinion_mining_sample].
### Recognize entities
[recognize_entities][recognize_entities] recognizes and categories entities in its input text as people, places, organizations, date/time, quantities, percentages, currencies, and more.
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
endpoint="https://<region>.api.cognitive.microsoft.com/"
text_analytics_client = TextAnalyticsClient(endpoint, credential)
documents = [
"""
Microsoft was founded by Bill Gates and Paul Allen. Its headquarters are located in Redmond. Redmond is a
city in King County, Washington, United States, located 15 miles east of Seattle.
""",
"Jeff bought three dozen eggs because there was a 50% discount."
]
response = text_analytics_client.recognize_entities(documents, language="en")
result = [doc for doc in response if not doc.is_error]
for doc in result:
for entity in doc.entities:
print("Entity: {}".format(entity.text))
print("...Category: {}".format(entity.category))
print("...Confidence Score: {}".format(entity.confidence_score))
print("...Offset: {}".format(entity.offset))
```
The returned response is a heterogeneous list of result and error objects: list[[RecognizeEntitiesResult][recognize_entities_result], [DocumentError][document_error]]
Please refer to the service documentation for a conceptual discussion of [named entity recognition][named_entity_recognition]
and [supported types][named_entity_categories].
### Recognize linked entities
[recognize_linked_entities][recognize_linked_entities] recognizes and disambiguates the identity of each entity found in its input text (for example,
determining whether an occurrence of the word Mars refers to the planet, or to the
Roman god of war). Recognized entities are associated with URLs to a well-known knowledge base, like Wikipedia.
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
endpoint="https://<region>.api.cognitive.microsoft.com/"
text_analytics_client = TextAnalyticsClient(endpoint, credential)
documents = [
"Microsoft was founded by Bill Gates and Paul Allen. Its headquarters are located in Redmond.",
"Easter Island, a Chilean territory, is a remote volcanic island in Polynesia."
]
response = text_analytics_client.recognize_linked_entities(documents, language="en")
result = [doc for doc in response if not doc.is_error]
for doc in result:
for entity in doc.entities:
print("Entity: {}".format(entity.name))
print("...URL: {}".format(entity.url))
print("...Data Source: {}".format(entity.data_source))
print("...Entity matches:")
for match in entity.matches:
print("......Entity match text: {}".format(match.text))
print("......Confidence Score: {}".format(match.confidence_score))
print("......Offset: {}".format(match.offset))
```
The returned response is a heterogeneous list of result and error objects: list[[RecognizeLinkedEntitiesResult][recognize_linked_entities_result], [DocumentError][document_error]]
Please refer to the service documentation for a conceptual discussion of [entity linking][linked_entity_recognition]
and [supported types][linked_entities_categories].
### Recognize PII entities
[recognize_pii_entities][recognize_pii_entities] recognizes and categorizes Personally Identifiable Information (PII) entities in its input text, such as
Social Security Numbers, bank account information, credit card numbers, and more. This endpoint is only available for v3.1-preview and up.
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
endpoint="https://<region>.api.cognitive.microsoft.com/"
text_analytics_client = TextAnalyticsClient(endpoint, credential)
documents = [
"""
We have an employee called Parker who cleans up after customers. The employee's
SSN is 859-98-0987, and their phone number is 555-555-5555.
"""
]
response = text_analytics_client.recognize_pii_entities(documents, language="en")
result = [doc for doc in response if not doc.is_error]
for idx, doc in enumerate(result):
print("Document text: {}".format(documents[idx]))
print("Redacted document text: {}".format(doc.redacted_text))
for entity in doc.entities:
print("...Entity: {}".format(entity.text))
print("......Category: {}".format(entity.category))
print("......Confidence Score: {}".format(entity.confidence_score))
print("......Offset: {}".format(entity.offset))
```
The returned response is a heterogeneous list of result and error objects: list[[RecognizePiiEntitiesResult][recognize_pii_entities_result], [DocumentError][document_error]]
Please refer to the service documentation for [supported PII entity types][pii_entity_categories].
### Extract key phrases
[extract_key_phrases][extract_key_phrases] determines the main talking points in its input text. For example, for the input text "The food was delicious and there were wonderful staff", the API returns: "food" and "wonderful staff".
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
endpoint="https://<region>.api.cognitive.microsoft.com/"
text_analytics_client = TextAnalyticsClient(endpoint, credential)
documents = [
"Redmond is a city in King County, Washington, United States, located 15 miles east of Seattle.",
"""
I need to take my cat to the veterinarian. He has been sick recently, and I need to take him
before I travel to South America for the summer.
""",
]
response = text_analytics_client.extract_key_phrases(documents, language="en")
result = [doc for doc in response if not doc.is_error]
for doc in result:
print(doc.key_phrases)
```
The returned response is a heterogeneous list of result and error objects: list[[ExtractKeyPhrasesResult][extract_key_phrases_result], [DocumentError][document_error]]
Please refer to the service documentation for a conceptual discussion of [key phrase extraction][key_phrase_extraction].
### Detect language
[detect_language][detect_language] determines the language of its input text, including the confidence score of the predicted language.
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
endpoint="https://<region>.api.cognitive.microsoft.com/"
text_analytics_client = TextAnalyticsClient(endpoint, credential)
documents = [
"""
This whole document is written in English. In order for the whole document to be written
in English, every sentence also has to be written in English, which it is.
""",
"Il documento scritto in italiano.",
"Dies ist in deutsche Sprache verfasst."
]
response = text_analytics_client.detect_language(documents)
result = [doc for doc in response if not doc.is_error]
for doc in result:
print("Language detected: {}".format(doc.primary_language.name))
print("ISO6391 name: {}".format(doc.primary_language.iso6391_name))
print("Confidence score: {}\n".format(doc.primary_language.confidence_score))
```
The returned response is a heterogeneous list of result and error objects: list[[DetectLanguageResult][detect_language_result], [DocumentError][document_error]]
Please refer to the service documentation for a conceptual discussion of [language detection][language_detection]
and [language and regional support][language_and_regional_support].
### Healthcare Analysis
The example below extracts entities recognized within the healthcare domain, and identifies relationships between entities within the input document and links to known sources of information in various well known databases, such as UMLS, CHV, MSH, etc. This sample demonstrates the usage for [long-running operations](#long-running-operations).
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
endpoint="https://<region>.api.cognitive.microsoft.com/"
text_analytics_client = TextAnalyticsClient(endpoint, credential, api_version="v3.1-preview.3")
documents = ["Subject is taking 100mg of ibuprofen twice daily"]
poller = text_analytics_client.begin_analyze_healthcare(documents, show_stats=True)
result = poller.result()
docs = [doc for doc in result if not doc.is_error]
print("Results of Healthcare Analysis:")
for idx, doc in enumerate(docs):
for entity in doc.entities:
print("Entity: {}".format(entity.text))
print("...Category: {}".format(entity.category))
print("...Subcategory: {}".format(entity.subcategory))
print("...Offset: {}".format(entity.offset))
print("...Confidence score: {}".format(entity.confidence_score))
if entity.links is not None:
print("...Links:")
for link in entity.links:
print("......ID: {}".format(link.id))
print("......Data source: {}".format(link.data_source))
for relation in doc.relations:
print("Relation:")
print("...Source: {}".format(relation.source.text))
print("...Target: {}".format(relation.target.text))
print("...Type: {}".format(relation.relation_type))
print("...Bidirectional: {}".format(relation.is_bidirectional))
print("------------------------------------------")
```
Note: The Healthcare Analysis service is currently available only in API version v3.1-preview.3 in gated preview. Since this is a gated preview, AAD is not supported. More information [here](https://docs.microsoft.com/azure/cognitive-services/text-analytics/how-tos/text-analytics-for-health?tabs=ner#request-access-to-the-public-preview).
### Batch Analysis
The example below demonstrates how to perform multiple analyses over one set of documents in a single request. Currently batching is supported using any combination of the following Text Analytics APIs in a single request:
* Entities Recognition
* PII Entities Recognition
* Key Phrase Extraction
This sample demonstrates the usage for [long-running operations](#long-running-operations)
```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
credential = AzureKeyCredential("<api_key>")
endpoint="https://<region>.api.cognitive.microsoft.com/"
text_analytics_client = TextAnalyticsClient(endpoint, credential, api_version="v3.1-preview.3")
documents = ["Microsoft was founded by Bill Gates and Paul Allen."]
poller = text_analytics_client.begin_analyze(
documents,
display_name="Sample Text Analysis",
entities_recognition_tasks=[EntitiesRecognitionTask()],
pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()],
key_phrase_extraction_tasks=[KeyPhraseExtractionTask()]
)
result = poller.result()
for page in result:
for task in page.entities_recognition_results:
print("Results of Entities Recognition task:")
docs = [doc for doc in task.results if not doc.is_error]
for idx, doc in enumerate(docs):
print("\nDocument text: {}".format(documents[idx]))
for entity in doc.entities:
print("Entity: {}".format(entity.text))
print("...Category: {}".format(entity.category))
print("...Confidence Score: {}".format(entity.confidence_score))
print("...Offset: {}".format(entity.offset))
print("------------------------------------------")
for task in page.pii_entities_recognition_results:
print("Results of PII Entities Recognition task:")
docs = [doc for doc in task.results if not doc.is_error]
for idx, doc in enumerate(docs):
print("Document text: {}".format(documents[idx]))
for entity in doc.entities:
print("Entity: {}".format(entity.text))
print("Category: {}".format(entity.category))
print("Confidence Score: {}\n".format(entity.confidence_score))
print("------------------------------------------")
for task in page.key_phrase_extraction_results:
print("Results of Key Phrase Extraction task:")
docs = [doc for doc in task.results if not doc.is_error]
for idx, doc in enumerate(docs):
print("Document text: {}\n".format(documents[idx]))
print("Key Phrases: {}\n".format(doc.key_phrases))
print("------------------------------------------")
```
The returned response is an object encapsulating multiple iterables, each representing results of individual analyses.
Note: Batch analysis is currently available only in API version v3.1-preview.3.
## Optional Configuration
Optional keyword arguments can be passed in at the client and per-operation level.
The azure-core [reference documentation][azure_core_ref_docs]
describes available configurations for retries, logging, transport protocols, and more.
## Troubleshooting
### General
The Text Analytics client will raise exceptions defined in [Azure Core][azure_core].
### Logging
This library uses the standard
[logging][python_logging] library for logging.
Basic information about HTTP sessions (URLs, headers, etc.) is logged at INFO
level.
Detailed DEBUG level logging, including request/response bodies and unredacted
headers, can be enabled on a client with the `logging_enable` keyword argument:
```python
import sys
import logging
from azure.identity import DefaultAzureCredential
from azure.ai.textanalytics import TextAnalyticsClient
# Create a logger for the 'azure' SDK
logger = logging.getLogger('azure')
logger.setLevel(logging.DEBUG)
# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)
endpoint = "https://<region>.cognitiveservices.azure.com/"
credential = DefaultAzureCredential()
# This client will log detailed information about its HTTP sessions, at DEBUG level
text_analytics_client = TextAnalyticsClient(endpoint, credential, logging_enable=True)
result = text_analytics_client.analyze_sentiment(["I did not like the restaurant. The food was too spicy."])
```
Similarly, `logging_enable` can enable detailed logging for a single operation,
even when it isn't enabled for the client:
```python
result = text_analytics_client.analyze_sentiment(documents, logging_enable=True)
```
## Next steps
### More sample code
These code samples show common scenario operations with the Azure Text Analytics client library.
The async versions of the samples (the python sample files appended with `_async`) show asynchronous operations
with Text Analytics and require Python 3.5 or later.
Authenticate the client with a Cognitive Services/Text Analytics API key or a token credential from [azure-identity][azure_identity]:
* [sample_authentication.py][sample_authentication] ([async version][sample_authentication_async])
Common scenarios
* Analyze sentiment: [sample_analyze_sentiment.py][analyze_sentiment_sample] ([async version][analyze_sentiment_sample_async])
* Recognize entities: [sample_recognize_entities.py][recognize_entities_sample] ([async version][recognize_entities_sample_async])
* Recognize personally identifiable information: [sample_recognize_pii_entities.py][recognize_pii_entities_sample]([async version][recognize_pii_entities_sample_async])
* Recognize linked entities: [sample_recognize_linked_entities.py][recognize_linked_entities_sample] ([async version][recognize_linked_entities_sample_async])
* Extract key phrases: [sample_extract_key_phrases.py][extract_key_phrases_sample] ([async version][extract_key_phrases_sample_async])
* Detect language: [sample_detect_language.py][detect_language_sample] ([async version][detect_language_sample_async])
* Healthcare Analysis: [sample_analyze_healthcare.py][analyze_healthcare_sample] ([async version][analyze_healthcare_sample_async])
* Batch Analysis: [sample_anayze.py][analyze_sample] ([async version][analyze_sample_async])
Advanced scenarios
* Opinion Mining: [sample_analyze_sentiment_with_opinion_mining.py][opinion_mining_sample] ([async_version][opinion_mining_sample_async])
### Additional documentation
For more extensive documentation on Azure Cognitive Services Text Analytics, see the [Text Analytics documentation][TA_product_documentation] on docs.microsoft.com.
## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit [cla.microsoft.com][cla].
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information see the [Code of Conduct FAQ][coc_faq] or contact [opencode@microsoft.com][coc_contact] with any additional questions or comments.
<!-- LINKS -->
[source_code]: https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/azure/ai/textanalytics
[TA_pypi]: https://pypi.org/project/azure-ai-textanalytics/
[TA_ref_docs]: https://aka.ms/azsdk-python-textanalytics-ref-docs
[TA_samples]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples
[TA_product_documentation]: https://docs.microsoft.com/azure/cognitive-services/text-analytics/overview
[azure_subscription]: https://azure.microsoft.com/free/
[TA_or_CS_resource]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows
[pip]: https://pypi.org/project/pip/
[azure_portal_create_TA_resource]: https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
[azure_cli_create_TA_resource]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account-cli?tabs=windows
[multi_and_single_service]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows
[azure_cli_endpoint_lookup]: https://docs.microsoft.com/cli/azure/cognitiveservices/account?view=azure-cli-latest#az-cognitiveservices-account-show
[azure_portal_get_endpoint]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows#get-the-keys-for-your-resource
[cognitive_authentication]: https://docs.microsoft.com/azure/cognitive-services/authentication
[cognitive_authentication_api_key]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows#get-the-keys-for-your-resource
[install_azure_identity]: https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/identity/azure-identity#install-the-package
[register_aad_app]: https://docs.microsoft.com/azure/cognitive-services/authentication#assign-a-role-to-a-service-principal
[grant_role_access]: https://docs.microsoft.com/azure/cognitive-services/authentication#assign-a-role-to-a-service-principal
[cognitive_custom_subdomain]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-custom-subdomains
[custom_subdomain]: https://docs.microsoft.com/azure/cognitive-services/authentication#create-a-resource-with-a-custom-subdomain
[cognitive_authentication_aad]: https://docs.microsoft.com/azure/cognitive-services/authentication#authenticate-with-azure-active-directory
[azure_identity_credentials]: https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/identity/azure-identity#credentials
[default_azure_credential]: https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/identity/azure-identity#defaultazurecredential
[service_limits]: https://docs.microsoft.com/azure/cognitive-services/text-analytics/overview#data-limits
[azure-key-credential]: https://aka.ms/azsdk-python-core-azurekeycredential
[document_error]: https://aka.ms/azsdk-python-textanalytics-documenterror
[detect_language_result]: https://aka.ms/azsdk-python-textanalytics-detectlanguageresult
[recognize_entities_result]: https://aka.ms/azsdk-python-textanalytics-recognizeentitiesresult
[recognize_pii_entities_result]: https://aka.ms/azsdk-python-textanalytics-recognizepiientitiesresult
[recognize_linked_entities_result]: https://aka.ms/azsdk-python-textanalytics-recognizelinkedentitiesresult
[analyze_sentiment_result]: https://aka.ms/azsdk-python-textanalytics-analyzesentimentresult
[extract_key_phrases_result]: https://aka.ms/azsdk-python-textanalytics-extractkeyphrasesresult
[text_document_input]: https://aka.ms/azsdk-python-textanalytics-textdocumentinput
[detect_language_input]: https://aka.ms/azsdk-python-textanalytics-detectlanguageinput
[text_analytics_client]: https://aka.ms/azsdk-python-textanalytics-textanalyticsclient
[analyze_sentiment]: https://aka.ms/azsdk-python-textanalytics-analyzesentiment
[recognize_entities]: https://aka.ms/azsdk-python-textanalytics-recognizeentities
[recognize_pii_entities]: https://aka.ms/azsdk-python-textanalytics-recognizepiientities
[recognize_linked_entities]: https://aka.ms/azsdk-python-textanalytics-recognizelinkedentities
[extract_key_phrases]: https://aka.ms/azsdk-python-textanalytics-extractkeyphrases
[detect_language]: https://aka.ms/azsdk-python-textanalytics-detectlanguage
[language_detection]: https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-language-detection
[language_and_regional_support]: https://docs.microsoft.com/azure/cognitive-services/text-analytics/language-support
[sentiment_analysis]: https://docs.microsoft.com/azure/cognitive-services/text-analytics/how-tos/text-analytics-how-to-sentiment-analysis
[key_phrase_extraction]: https://docs.microsoft.com/azure/cognitive-services/text-analytics/how-tos/text-analytics-how-to-keyword-extraction
[linked_entities_categories]: https://docs.microsoft.com/azure/cognitive-services/text-analytics/named-entity-types?tabs=general
[linked_entity_recognition]: https://docs.microsoft.com/azure/cognitive-services/text-analytics/how-tos/text-analytics-how-to-entity-linking
[pii_entity_categories]: https://docs.microsoft.com/azure/cognitive-services/text-analytics/named-entity-types?tabs=personal
[named_entity_recognition]: https://docs.microsoft.com/azure/cognitive-services/text-analytics/how-tos/text-analytics-how-to-entity-linking
[named_entity_categories]: https://docs.microsoft.com/azure/cognitive-services/text-analytics/named-entity-types?tabs=general
[azure_core_ref_docs]: https://aka.ms/azsdk-python-core-policies
[azure_core]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/core/azure-core/README.md
[azure_identity]: https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/identity/azure-identity
[python_logging]: https://docs.python.org/3.5/library/logging.html
[sample_authentication]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_authentication.py
[sample_authentication_async]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_authentication_async.py
[detect_language_sample]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_detect_language.py
[detect_language_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_detect_language_async.py
[analyze_sentiment_sample]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_analyze_sentiment.py
[analyze_sentiment_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_analyze_sentiment_async.py
[extract_key_phrases_sample]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_extract_key_phrases.py
[extract_key_phrases_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_extract_key_phrases_async.py
[recognize_entities_sample]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_recognize_entities.py
[recognize_entities_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_recognize_entities_async.py
[recognize_linked_entities_sample]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_recognize_linked_entities.py
[recognize_linked_entities_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_recognize_linked_entities_async.py
[recognize_pii_entities_sample]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_recognize_pii_entities.py
[recognize_pii_entities_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_recognize_pii_entities_async.py
[analyze_healthcare_sample]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_analyze_healthcare.py
[analyze_healthcare_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_analyze_healthcare_async.py
[analyze_sample]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_analyze.py
[analyze_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_analyze_async.py
[opinion_mining_sample]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_analyze_sentiment_with_opinion_mining.py
[opinion_mining_sample_async]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/async_samples/sample_analyze_sentiment_with_opinion_mining_async.py
[cla]: https://cla.microsoft.com
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
[coc_contact]: mailto:opencode@microsoft.com
|