1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
# Azure Metrics Advisor client library for Python
Metrics Advisor is a scalable real-time time series monitoring, alerting, and root cause analysis platform. Use Metrics Advisor to:
- Analyze multi-dimensional data from multiple data sources
- Identify and correlate anomalies
- Configure and fine-tune the anomaly detection model used on your data
- Diagnose anomalies and help with root cause analysis
[Source code][src_code] | [Package (Pypi)][package] | [API reference documentation][reference_documentation] | [Product documentation][ma_docs] | [Samples][samples_readme]
## Getting started
### Install the package
Install the Azure Metrics Advisor client library for Python with pip:
```commandline
pip install azure-ai-metricsadvisor --pre
```
### Prerequisites
* Python 2.7, or 3.5 or later is required to use this package.
* You need an [Azure subscription][azure_sub], and a [Metrics Advisor serivce][ma_service] to use this package.
### Authenticate the client
You will need two keys to authenticate the client:
1) The subscription key to your Metrics Advisor resource. You can find this in the Keys and Endpoint section of your resource in the Azure portal.
2) The API key for your Metrics Advisor instance. You can find this in the web portal for Metrics Advisor, in API keys on the left navigation menu.
We can use the keys to create a new `MetricsAdvisorClient` or `MetricsAdvisorAdministrationClient`.
```py
import os
from azure.ai.metricsadvisor import (
MetricsAdvisorKeyCredential,
MetricsAdvisorClient,
MetricsAdvisorAdministrationClient,
)
service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
client = MetricsAdvisorClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key))
admin_client = MetricsAdvisorAdministrationClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key))
```
## Key concepts
### MetricsAdvisorClient
`MetricsAdvisorClient` helps with:
- listing incidents
- listing root causes of incidents
- retrieving original time series data and time series data enriched by the service.
- listing alerts
- adding feedback to tune your model
### MetricsAdvisorAdministrationClient
`MetricsAdvisorAdministrationClient` allows you to
- manage data feeds
- manage anomaly detection configurations
- manage anomaly alerting configurations
- manage hooks
### DataFeed
A `DataFeed` is what Metrics Advisor ingests from your data source, such as Cosmos DB or a SQL server. A data feed contains rows of:
- timestamps
- zero or more dimensions
- one or more measures
### Metric
A `DataFeedMetric` is a quantifiable measure that is used to monitor and assess the status of a specific business process. It can be a combination of multiple time series values divided into dimensions. For example a web health metric might contain dimensions for user count and the en-us market.
### AnomalyDetectionConfiguration
`AnomalyDetectionConfiguration` is required for every time series, and determines whether a point in the time series is an anomaly.
### Anomaly & Incident
After a detection configuration is applied to metrics, `AnomalyIncident`s are generated whenever any series within it has an `DataPointAnomaly`.
### Alert
You can configure which anomalies should trigger an `AnomalyAlert`. You can set multiple alerts with different settings. For example, you could create an alert for anomalies with lower business impact, and another for more important alerts.
### Notification Hook
Metrics Advisor lets you create and subscribe to real-time alerts. These alerts are sent over the internet, using a notification hook like `EmailNotificationHook` or `WebNotificationHook`.
## Examples
* [Add a data feed from a sample or data source](#add-a-data-feed-from-a-sample-or-data-source "Add a data feed from a sample or data source")
* [Check ingestion status](#check-ingestion-status "Check ingestion status")
* [Configure anomaly detection configuration](#configure-anomaly-detection-configuration "Configure anomaly detection configuration")
* [Configure alert configuration](#configure-alert-configuration "Configure alert configuration")
* [Query anomaly detection results](#query-anomaly-detection-results "Query anomaly detection results")
* [Query incidents](#query-incidents "Query incidents")
* [Query root causes](#query-root-causes "Query root causes")
* [Add hooks for receiving anomaly alerts](#add-hooks-for-receiving-anomaly-alerts "Add hooks for receiving anomaly alerts")
### Add a data feed from a sample or data source
Metrics Advisor supports connecting different types of data sources. Here is a sample to ingest data from SQL Server.
```py
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
SQLServerDataFeed,
DataFeedSchema,
DataFeedMetric,
DataFeedDimension,
DataFeedOptions,
DataFeedRollupSettings,
)
service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
sql_server_connection_string = os.getenv("SQL_SERVER_CONNECTION_STRING")
query = os.getenv("SQL_SERVER_QUERY")
client = MetricsAdvisorAdministrationClient(
service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key)
)
data_feed = client.create_data_feed(
name="My data feed",
source=SQLServerDataFeed(
connection_string=sql_server_connection_string,
query=query,
),
granularity="Daily",
schema=DataFeedSchema(
metrics=[
DataFeedMetric(name="cost", display_name="Cost"),
DataFeedMetric(name="revenue", display_name="Revenue")
],
dimensions=[
DataFeedDimension(name="category", display_name="Category"),
DataFeedDimension(name="city", display_name="City")
],
timestamp_column="Timestamp"
),
ingestion_settings=datetime.datetime(2019, 10, 1),
options=DataFeedOptions(
data_feed_description="cost/revenue data feed",
rollup_settings=DataFeedRollupSettings(
rollup_type="AutoRollup",
rollup_method="Sum",
rollup_identification_value="__CUSTOM_SUM__"
),
missing_data_point_fill_settings=DataFeedMissingDataPointFillSettings(
fill_type="SmartFilling"
),
access_mode="Private"
)
)
return data_feed
```
### Check ingestion status
After we start the data ingestion, we can check the ingestion status.
```py
import datetime
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
data_feed_id = os.getenv("DATA_FEED_ID")
client = MetricsAdvisorAdministrationClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key)
)
ingestion_status = client.list_data_feed_ingestion_status(
data_feed_id,
datetime.datetime(2020, 9, 20),
datetime.datetime(2020, 9, 25)
)
for status in ingestion_status:
print("Timestamp: {}".format(status.timestamp))
print("Status: {}".format(status.status))
print("Message: {}\n".format(status.message))
```
### Configure anomaly detection configuration
While a default detection configuration is automatically applied to each metric, we can tune the detection modes used on our data by creating a customized anomaly detection configuration.
```py
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
ChangeThresholdCondition,
HardThresholdCondition,
SmartDetectionCondition,
SuppressCondition,
MetricDetectionCondition,
)
service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
metric_id = os.getenv("METRIC_ID")
client = MetricsAdvisorAdministrationClient(
service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key)
)
change_threshold_condition = ChangeThresholdCondition(
anomaly_detector_direction="Both",
change_percentage=20,
shift_point=10,
within_range=True,
suppress_condition=SuppressCondition(
min_number=5,
min_ratio=2
)
)
hard_threshold_condition = HardThresholdCondition(
anomaly_detector_direction="Up",
upper_bound=100,
suppress_condition=SuppressCondition(
min_number=2,
min_ratio=2
)
)
smart_detection_condition = SmartDetectionCondition(
anomaly_detector_direction="Up",
sensitivity=10,
suppress_condition=SuppressCondition(
min_number=2,
min_ratio=2
)
)
detection_config = client.create_detection_configuration(
name="my_detection_config",
metric_id=metric_id,
description="anomaly detection config for metric",
whole_series_detection_condition=MetricDetectionCondition(
cross_conditions_operator="OR",
change_threshold_condition=change_threshold_condition,
hard_threshold_condition=hard_threshold_condition,
smart_detection_condition=smart_detection_condition
)
)
return detection_config
```
### Configure alert configuration
Then let's configure in which conditions an alert needs to be triggered.
```py
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
MetricAlertConfiguration,
MetricAnomalyAlertScope,
TopNGroupScope,
MetricAnomalyAlertConditions,
SeverityCondition,
MetricBoundaryCondition,
MetricAnomalyAlertSnoozeCondition,
)
service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
anomaly_detection_configuration_id = os.getenv("DETECTION_CONFIGURATION_ID")
hook_id = os.getenv("HOOK_ID")
client = MetricsAdvisorAdministrationClient(
service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key)
)
alert_config = client.create_alert_configuration(
name="my alert config",
description="alert config description",
cross_metrics_operator="AND",
metric_alert_configurations=[
MetricAlertConfiguration(
detection_configuration_id=anomaly_detection_configuration_id,
alert_scope=MetricAnomalyAlertScope(
scope_type="WholeSeries"
),
alert_conditions=MetricAnomalyAlertConditions(
severity_condition=SeverityCondition(
min_alert_severity="Low",
max_alert_severity="High"
)
)
),
MetricAlertConfiguration(
detection_configuration_id=anomaly_detection_configuration_id,
alert_scope=MetricAnomalyAlertScope(
scope_type="TopN",
top_n_group_in_scope=TopNGroupScope(
top=10,
period=5,
min_top_count=5
)
),
alert_conditions=MetricAnomalyAlertConditions(
metric_boundary_condition=MetricBoundaryCondition(
direction="Up",
upper=50
)
),
alert_snooze_condition=MetricAnomalyAlertSnoozeCondition(
auto_snooze=2,
snooze_scope="Metric",
only_for_successive=True
)
),
],
hook_ids=[hook_id]
)
return alert_config
```
### Query anomaly detection results
We can query the alerts and anomalies.
```py
import datetime
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient
service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
alert_config_id = os.getenv("ALERT_CONFIG_ID")
alert_id = os.getenv("ALERT_ID")
client = MetricsAdvisorClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key)
)
results = client.list_alerts(
alert_configuration_id=alert_config_id,
start_time=datetime.datetime(2020, 1, 1),
end_time=datetime.datetime(2020, 9, 9),
time_mode="AnomalyTime",
)
for result in results:
print("Alert id: {}".format(result.id))
print("Create on: {}".format(result.created_on))
results = client.list_anomalies(
alert_configuration_id=alert_config_id,
alert_id=alert_id,
)
for result in results:
print("Create on: {}".format(result.created_on))
print("Severity: {}".format(result.severity))
print("Status: {}".format(result.status))
```
### Query incidents
We can query the incidents for a detection configuration.
```py
import datetime
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient
service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
anomaly_detection_configuration_id = os.getenv("DETECTION_CONFIGURATION_ID")
client = MetricsAdvisorClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key)
)
results = client.list_incidents(
detection_configuration_id=anomaly_detection_configuration_id,
start_time=datetime.datetime(2020, 1, 1),
end_time=datetime.datetime(2020, 9, 9),
)
for result in results:
print("Metric id: {}".format(result.metric_id))
print("Incident ID: {}".format(result.id))
print("Severity: {}".format(result.severity))
print("Status: {}".format(result.status))
```
### Query root causes
We can also query the root causes of an incident
```py
import datetime
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient
service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
anomaly_detection_configuration_id = os.getenv("DETECTION_CONFIGURATION_ID")
incident_id = os.getenv("INCIDENT_ID")
client = MetricsAdvisorClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key)
)
results = client.list_incident_root_causes(
detection_configuration_id=anomaly_detection_configuration_id,
incident_id=incident_id,
)
for result in results:
print("Score: {}".format(result.score))
print("Description: {}".format(result.description))
```
### Add hooks for receiving anomaly alerts
We can add some hooks so when an alert is triggered, we can get call back.
```py
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import EmailNotificationHook
service_endpoint = os.getenv("ENDPOINT")
subscription_key = os.getenv("SUBSCRIPTION_KEY")
api_key = os.getenv("API_KEY")
client = MetricsAdvisorAdministrationClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key))
hook = client.create_hook(
hook=EmailNotificationHook(
name="email hook",
description="my email hook",
emails_to_alert=["alertme@alertme.com"],
external_link="https://docs.microsoft.com/en-us/azure/cognitive-services/metrics-advisor/how-tos/alerts"
)
)
```
### Async APIs
This library includes a complete async API supported on Python 3.5+. To use it, you must
first install an async transport, such as [aiohttp](https://pypi.org/project/aiohttp/).
See
[azure-core documentation][azure_core_docs]
for more information.
```py
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential
from azure.ai.metricsadvisor.aio import MetricsAdvisorClient, MetricsAdvisorAdministrationClient
client = MetricsAdvisorClient(
service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key)
)
admin_client = MetricsAdvisorAdministrationClient(
service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key)
)
```
## Troubleshooting
### General
The Azure Metrics Advisor clients will raise exceptions defined in [Azure Core][azure_core].
### Logging
This library uses the standard
[logging][python_logging] library for logging.
Basic information about HTTP sessions (URLs, headers, etc.) is logged at `INFO` level.
Detailed `DEBUG` level logging, including request/response bodies and **unredacted**
headers, can be enabled on the client or per-operation with the `logging_enable` keyword argument.
See full SDK logging documentation with examples [here][sdk_logging_docs].
## Next steps
### More sample code
For more details see the [samples README][samples_readme].
## Contributing
This project welcomes contributions and suggestions. Most contributions require
you to agree to a Contributor License Agreement (CLA) declaring that you have
the right to, and actually do, grant us the rights to use your contribution. For
details, visit [cla.microsoft.com][cla].
This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct].
For more information see the [Code of Conduct FAQ][coc_faq]
or contact [opencode@microsoft.com][coc_contact] with any
additional questions or comments.
<!-- LINKS -->
[src_code]: https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/metricsadvisor/azure-ai-metricsadvisor
[reference_documentation]: https://aka.ms/azsdk/python/metricsadvisor/docs
[ma_docs]: https://docs.microsoft.com/azure/cognitive-services/metrics-advisor/overview
[azure_cli]: https://docs.microsoft.com/cli/azure
[azure_sub]: https://azure.microsoft.com/free/
[package]: https://aka.ms/azsdk/python/metricsadvisor/pypi
[ma_service]: https://go.microsoft.com/fwlink/?linkid=2142156
[python_logging]: https://docs.python.org/3.5/library/logging.html
[azure_core]: https://aka.ms/azsdk/python/core/docs#module-azure.core.exceptions
[azure_core_docs]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/core/azure-core/README.md#transport
[sdk_logging_docs]: https://docs.microsoft.com/azure/developer/python/azure-sdk-logging
[samples_readme]: https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/metricsadvisor/azure-ai-metricsadvisor/samples/README.md
[cla]: https://cla.microsoft.com
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
[coc_contact]: mailto:opencode@microsoft.com
|