File: README.md

package info (click to toggle)
python-azure 20230112%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 749,544 kB
  • sloc: python: 6,815,827; javascript: 287; makefile: 195; xml: 109; sh: 105
file content (665 lines) | stat: -rw-r--r-- 29,727 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
[![Build Status](https://dev.azure.com/azure-sdk/public/_apis/build/status/azure-sdk-for-python.client?branchName=main)](https://dev.azure.com/azure-sdk/public/_build/latest?definitionId=46?branchName=main)

# Azure Conversational Language Understanding client library for Python
Conversational Language Understanding - aka **CLU** for short - is a cloud-based conversational AI service which provides many language understanding capabilities like:
- Conversation App: It's used in extracting intents and entities in conversations
- Workflow app: Acts like an orchestrator to select the best candidate to analyze conversations to get best response from apps like Qna, Luis, and Conversation App
- Conversational Summarization: Used to analyze conversations in the form of issues/resolution, chapter title, and narrative summarizations
- Conversational PII: Used to extract and redact personally-identifiable information (PII)
- Conversational Sentiment Analysis: Used to analyze the sentiment of conversations

[Source code][conversationallanguage_client_src] | [Package (PyPI)][conversationallanguage_pypi_package] | [API reference documentation][api_reference_documentation] | [Samples][conversationallanguage_samples] | [Product documentation][conversationallanguage_docs] | [Analysis REST API documentation][conversationanalysis_restdocs] | [Authoring REST API documentation][conversationanalysis_restdocs_authoring]

## Getting started

### Prerequisites

* Python 3.7 or later is required to use this package.
* An [Azure subscription][azure_subscription]
* An existing Azure Language Service Resource


### Install the package

Install the Azure Conversations client library for Python with [pip][pip_link]:

```bash
pip install azure-ai-language-conversations --pre
```

> Note: This version of the client library defaults to the 2022-10-01-preview version of the service

### Authenticate the client
In order to interact with the CLU service, you'll need to create an instance of the [ConversationAnalysisClient][conversationanalysisclient_class] class, or [ConversationAuthoringClient][conversationauthoringclient_class] class. You will need an **endpoint**, and an **API key** to instantiate a client object. For more information regarding authenticating with Cognitive Services, see [Authenticate requests to Azure Cognitive Services][cognitive_auth].

#### Get an API key
You can get the **endpoint** and an **API key** from the Cognitive Services resource in the [Azure Portal][azure_portal].

Alternatively, use the [Azure CLI][azure_cli] command shown below to get the API key from the Cognitive Service resource.

```powershell
az cognitiveservices account keys list --resource-group <resource-group-name> --name <resource-name>
```


#### Create ConversationAnalysisClient
Once you've determined your **endpoint** and **API key** you can instantiate a `ConversationAnalysisClient`:

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations import ConversationAnalysisClient

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api-key>")
client = ConversationAnalysisClient(endpoint, credential)
```

#### Create ConversationAuthoringClient
Once you've determined your **endpoint** and **API key** you can instantiate a `ConversationAuthoringClient`:

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api-key>")
client = ConversationAuthoringClient(endpoint, credential)
```

#### Create a client with an Azure Active Directory Credential

To use an [Azure Active Directory (AAD) token credential][cognitive_authentication_aad],
provide an instance of the desired credential type obtained from the
[azure-identity][azure_identity_credentials] library.
Note that regional endpoints do not support AAD authentication. Create a [custom subdomain][custom_subdomain]
name for your resource in order to use this type of authentication.

Authentication with AAD requires some initial setup:

- [Install azure-identity][install_azure_identity]
- [Register a new AAD application][register_aad_app]
- [Grant access][grant_role_access] to the Language service by assigning the "Cognitive Services Language Reader" role to your service principal.

After setup, you can choose which type of [credential][azure_identity_credentials] from azure.identity to use.
As an example, [DefaultAzureCredential][default_azure_credential]
can be used to authenticate the client:

Set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables:
`AZURE_CLIENT_ID`, `AZURE_TENANT_ID`, `AZURE_CLIENT_SECRET`

Use the returned token credential to authenticate the client:

```python
from azure.ai.language.conversations import ConversationAnalysisClient
from azure.identity import DefaultAzureCredential

credential = DefaultAzureCredential()
client = ConversationAnalysisClient(endpoint="https://<my-custom-subdomain>.cognitiveservices.azure.com/", credential=credential)
```

## Key concepts

### ConversationAnalysisClient
The [ConversationAnalysisClient][conversationanalysisclient_class] is the primary interface for making predictions using your deployed Conversations models. For asynchronous operations, an async `ConversationAnalysisClient` is in the `azure.ai.language.conversation.aio` namespace.

### ConversationAuthoringClient
You can use the [ConversationAuthoringClient][conversationauthoringclient_class] to interface with the [Azure Language Portal][azure_language_portal] to carry out authoring operations on your language resource/project. For example, you can use it to create a project, populate with training data, train, test, and deploy. For asynchronous operations, an async `ConversationAuthoringClient` is in the `azure.ai.language.conversation.authoring.aio` namespace.

## Examples
The `azure-ai-language-conversation` client library provides both synchronous and asynchronous APIs.

The following examples show common scenarios using the `client` [created above](#create-conversationanalysisclient).

### Analyze Text with a Conversation App
If you would like to extract custom intents and entities from a user utterance, you can call the `client.analyze_conversation()` method with your conversation's project name as follows:


```python
# import libraries
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations import ConversationAnalysisClient

# get secrets
clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
clu_key = os.environ["AZURE_CONVERSATIONS_KEY"]
project_name = os.environ["AZURE_CONVERSATIONS_PROJECT_NAME"]
deployment_name = os.environ["AZURE_CONVERSATIONS_DEPLOYMENT_NAME"]

# analyze quey
client = ConversationAnalysisClient(clu_endpoint, AzureKeyCredential(clu_key))
with client:
    query = "Send an email to Carol about the tomorrow's demo"
    result = client.analyze_conversation(
        task={
            "kind": "Conversation",
            "analysisInput": {
                "conversationItem": {
                    "participantId": "1",
                    "id": "1",
                    "modality": "text",
                    "language": "en",
                    "text": query
                },
                "isLoggingEnabled": False
            },
            "parameters": {
                "projectName": project_name,
                "deploymentName": deployment_name,
                "verbose": True
            }
        }
    )

# view result
print("query: {}".format(result["result"]["query"]))
print("project kind: {}\n".format(result["result"]["prediction"]["projectKind"]))

print("top intent: {}".format(result["result"]["prediction"]["topIntent"]))
print("category: {}".format(result["result"]["prediction"]["intents"][0]["category"]))
print("confidence score: {}\n".format(result["result"]["prediction"]["intents"][0]["confidenceScore"]))

print("entities:")
for entity in result["result"]["prediction"]["entities"]:
    print("\ncategory: {}".format(entity["category"]))
    print("text: {}".format(entity["text"]))
    print("confidence score: {}".format(entity["confidenceScore"]))
    if "resolutions" in entity:
        print("resolutions")
        for resolution in entity["resolutions"]:
            print("kind: {}".format(resolution["resolutionKind"]))
            print("value: {}".format(resolution["value"]))
    if "extraInformation" in entity:
        print("extra info")
        for data in entity["extraInformation"]:
            print("kind: {}".format(data["extraInformationKind"]))
            if data["extraInformationKind"] == "ListKey":
                print("key: {}".format(data["key"]))
            if data["extraInformationKind"] == "EntitySubtype":
                print("value: {}".format(data["value"]))
```

### Analyze Text with an Orchestration App

If you would like to pass the user utterance to your orchestrator (worflow) app, you can call the `client.analyze_conversation()` method with your orchestration's project name. The orchestrator project simply orchestrates the submitted user utterance between your language apps (Luis, Conversation, and Question Answering) to get the best response according to the user intent. See the next example:


```python
# import libraries
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations import ConversationAnalysisClient

# get secrets
clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
clu_key = os.environ["AZURE_CONVERSATIONS_KEY"]
project_name = os.environ["AZURE_CONVERSATIONS_WORKFLOW_PROJECT_NAME"]
deployment_name = os.environ["AZURE_CONVERSATIONS_WORKFLOW_DEPLOYMENT_NAME"]

# analyze query
client = ConversationAnalysisClient(clu_endpoint, AzureKeyCredential(clu_key))
with client:
    query = "Reserve a table for 2 at the Italian restaurant"
    result = client.analyze_conversation(
        task={
            "kind": "Conversation",
            "analysisInput": {
                "conversationItem": {
                    "participantId": "1",
                    "id": "1",
                    "modality": "text",
                    "language": "en",
                    "text": query
                },
                "isLoggingEnabled": False
            },
            "parameters": {
                "projectName": project_name,
                "deploymentName": deployment_name,
                "verbose": True
            }
        }
    )

# view result
print("query: {}".format(result["result"]["query"]))
print("project kind: {}\n".format(result["result"]["prediction"]["projectKind"]))

# top intent
top_intent = result["result"]["prediction"]["topIntent"]
print("top intent: {}".format(top_intent))
top_intent_object = result["result"]["prediction"]["intents"][top_intent]
print("confidence score: {}".format(top_intent_object["confidenceScore"]))
print("project kind: {}".format(top_intent_object["targetProjectKind"]))

if top_intent_object["targetProjectKind"] == "Luis":
    print("\nluis response:")
    luis_response = top_intent_object["result"]["prediction"]
    print("top intent: {}".format(luis_response["topIntent"]))
    print("\nentities:")
    for entity in luis_response["entities"]:
        print("\n{}".format(entity))
```

### Conversational Summarization

You can use this sample if you need to summarize a conversation in the form of an issue, and final resolution. For example, a dialog from tech support:

```python
# import libraries
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations import ConversationAnalysisClient
# get secrets
endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
key = os.environ["AZURE_CONVERSATIONS_KEY"]
# analyze query
client = ConversationAnalysisClient(endpoint, AzureKeyCredential(key))
with client:
    poller = client.begin_conversation_analysis(
        task={
            "displayName": "Analyze conversations from xxx",
            "analysisInput": {
                "conversations": [
                    {
                        "conversationItems": [
                            {
                                "text": "Hello, how can I help you?",
                                "modality": "text",
                                "id": "1",
                                "participantId": "Agent"
                            },
                            {
                                "text": "How to upgrade Office? I am getting error messages the whole day.",
                                "modality": "text",
                                "id": "2",
                                "participantId": "Customer"
                            },
                            {
                                "text": "Press the upgrade button please. Then sign in and follow the instructions.",
                                "modality": "text",
                                "id": "3",
                                "participantId": "Agent"
                            }
                        ],
                        "modality": "text",
                        "id": "conversation1",
                        "language": "en"
                    },
                ]
            },
            "tasks": [
                {
                    "taskName": "Issue task",
                    "kind": "ConversationalSummarizationTask",
                    "parameters": {
                        "summaryAspects": ["issue"]
                    }
                },
                {
                    "taskName": "Resolution task",
                    "kind": "ConversationalSummarizationTask",
                    "parameters": {
                        "summaryAspects": ["resolution"]
                    }
                },
            ]
        }
    )

    # view result
    result = poller.result()
    task_results = result["tasks"]["items"]
    for task in task_results:
        print(f"\n{task['taskName']} status: {task['status']}")
        task_result = task["results"]
        if task_result["errors"]:
            print("... errors occurred ...")
            for error in task_result["errors"]:
                print(error)
        else:
            conversation_result = task_result["conversations"][0]
            if conversation_result["warnings"]:
                print("... view warnings ...")
                for warning in conversation_result["warnings"]:
                    print(warning)
            else:
                summaries = conversation_result["summaries"]
                print("... view task result ...")
                for summary in summaries:
                    print(f"{summary['aspect']}: {summary['text']}")
```

### Conversational PII

You can use this sample if you need to extract and redact pii info from/in conversations

```python
# import libraries
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations import ConversationAnalysisClient
# get secrets
endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
key = os.environ["AZURE_CONVERSATIONS_KEY"]
# analyze query
client = ConversationAnalysisClient(endpoint, AzureKeyCredential(key))
with client:
    poller = client.begin_conversation_analysis(
        task={
            "displayName": "Analyze PII in conversation",
            "analysisInput": {
                "conversations": [
                    {
                        "conversationItems": [
                            {
                                "id": "1",
                                "participantId": "0",
                                "modality": "transcript",
                                "text": "It is john doe.",
                                "lexical": "It is john doe",
                                "itn": "It is john doe",
                                "maskedItn": "It is john doe"
                            },
                            {
                                "id": "2",
                                "participantId": "1",
                                "modality": "transcript",
                                "text": "Yes, 633-27-8199 is my phone",
                                "lexical": "yes six three three two seven eight one nine nine is my phone",
                                "itn": "yes 633278199 is my phone",
                                "maskedItn": "yes 633278199 is my phone",
                            },
                            {
                                "id": "3",
                                "participantId": "1",
                                "modality": "transcript",
                                "text": "j.doe@yahoo.com is my email",
                                "lexical": "j dot doe at yahoo dot com is my email",
                                "maskedItn": "j.doe@yahoo.com is my email",
                                "itn": "j.doe@yahoo.com is my email",
                            }
                        ],
                        "modality": "transcript",
                        "id": "1",
                        "language": "en"
                    }
                ]
            },
            "tasks": [
                {
                    "kind": "ConversationalPIITask",
                    "parameters": {
                        "redactionSource": "lexical",
                        "piiCategories": [
                            "all"
                        ]
                    }
                }
            ]
        }
    )
    # view result
    result = poller.result()
    task_result = result["tasks"]["items"][0]
    print("... view task status ...")
    print("status: {}".format(task_result["status"]))
    conv_pii_result = task_result["results"]
    if conv_pii_result["errors"]:
        print("... errors occurred ...")
        for error in conv_pii_result["errors"]:
            print(error)
    else:
        conversation_result = conv_pii_result["conversations"][0]
        if conversation_result["warnings"]:
            print("... view warnings ...")
            for warning in conversation_result["warnings"]:
                print(warning)
        else:
            print("... view task result ...")
            for conversation in conversation_result["conversationItems"]:
                print("conversation id: {}".format(conversation["id"]))
                print("... entities ...")
                for entity in conversation["entities"]:
                    print("text: {}".format(entity["text"]))
                    print("category: {}".format(entity["category"]))
                    print("confidence: {}".format(entity["confidenceScore"]))
                    print("offset: {}".format(entity["offset"]))
                    print("length: {}".format(entity["length"]))
```


### Conversational Sentiment Analysis

Analyze sentiment in conversations.

```python
# import libraries
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations import ConversationAnalysisClient
# get secrets
endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
key = os.environ["AZURE_CONVERSATIONS_KEY"]
# analyze query
client = ConversationAnalysisClient(endpoint, AzureKeyCredential(key))

with client:
    poller = client.begin_conversation_analysis(
        task={
          "displayName": "Sentiment Analysis from a call center conversation",
          "analysisInput": {
            "conversations": [
              {
                "id": "1",
                "language": "en",
                "modality": "transcript",
                "conversationItems": [
                  {
                    "participantId": "1",
                    "id": "1",
                    "text": "I like the service. I do not like the food",
                    "lexical": "i like the service i do not like the food",
                  }
                ]
              }
            ]
          },
          "tasks": [
            {
              "taskName": "Conversation Sentiment Analysis",
              "kind": "ConversationalSentimentTask",
              "parameters": {
                "modelVersion": "latest",
                "predictionSource": "text"
              }
            }
          ]
        }
    )

    result = poller.result()
    task_result = result["tasks"]["items"][0]
    print("... view task status ...")
    print(f"status: {task_result['status']}")
    conv_sentiment_result = task_result["results"]
    if conv_sentiment_result["errors"]:
        print("... errors occurred ...")
        for error in conv_sentiment_result["errors"]:
            print(error)
    else:
        conversation_result = conv_sentiment_result["conversations"][0]
        if conversation_result["warnings"]:
            print("... view warnings ...")
            for warning in conversation_result["warnings"]:
                print(warning)
        else:
            print("... view task result ...")
            for conversation in conversation_result["conversationItems"]:
                print(f"Participant ID: {conversation['participantId']}")
                print(f"Sentiment: {conversation['sentiment']}")
                print(f"confidenceScores: {conversation['confidenceScores']}")
```


### Import a Conversation Project
This sample shows a common scenario for the authoring part of the SDK

```python
import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations.authoring import ConversationAuthoringClient

clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]
clu_key = os.environ["AZURE_CONVERSATIONS_KEY"]

project_name = "test_project"

exported_project_assets = {
    "projectKind": "Conversation",
    "intents": [{"category": "Read"}, {"category": "Delete"}],
    "entities": [{"category": "Sender"}],
    "utterances": [
        {
            "text": "Open Blake's email",
            "dataset": "Train",
            "intent": "Read",
            "entities": [{"category": "Sender", "offset": 5, "length": 5}],
        },
        {
            "text": "Delete last email",
            "language": "en-gb",
            "dataset": "Test",
            "intent": "Delete",
            "entities": [],
        },
    ],
}

client = ConversationAuthoringClient(
    clu_endpoint, AzureKeyCredential(clu_key)
)
poller = client.begin_import_project(
    project_name=project_name,
    project={
        "assets": exported_project_assets,
        "metadata": {
            "projectKind": "Conversation",
            "settings": {"confidenceThreshold": 0.7},
            "projectName": "EmailApp",
            "multilingual": True,
            "description": "Trying out CLU",
            "language": "en-us",
        },
        "projectFileVersion": "2022-05-01",
    },
)
response = poller.result()
print(response)

```


## Optional Configuration

Optional keyword arguments can be passed in at the client and per-operation level. The azure-core [reference documentation][azure_core_ref_docs] describes available configurations for retries, logging, transport protocols, and more.

## Troubleshooting

### General

The Conversations client will raise exceptions defined in [Azure Core][azure_core_exceptions].

### Logging

This library uses the standard
[logging][python_logging] library for logging.
Basic information about HTTP sessions (URLs, headers, etc.) is logged at INFO
level.

Detailed DEBUG level logging, including request/response bodies and unredacted
headers, can be enabled on a client with the `logging_enable` argument.

See full SDK logging documentation with examples [here][sdk_logging_docs].

```python
import sys
import logging
from azure.core.credentials import AzureKeyCredential
from azure.ai.language.conversations import ConversationAnalysisClient

# Create a logger for the 'azure' SDK
logger = logging.getLogger('azure')
logger.setLevel(logging.DEBUG)

# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<my-api-key>")

# This client will log detailed information about its HTTP sessions, at DEBUG level
client = ConversationAnalysisClient(endpoint, credential, logging_enable=True)
result = client.analyze_conversation(...)
```

Similarly, `logging_enable` can enable detailed logging for a single operation, even when it isn't enabled for the client:

```python
result = client.analyze_conversation(..., logging_enable=True)
```

## Next steps

### More sample code

See the [Sample README][conversationallanguage_samples] for several code snippets illustrating common patterns used in the CLU Python API.

## Contributing

See the [CONTRIBUTING.md][contributing] for details on building, testing, and contributing to this library.

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit [cla.microsoft.com][cla].

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information see the [Code of Conduct FAQ][coc_faq] or contact [opencode@microsoft.com][coc_contact] with any additional questions or comments.

<!-- LINKS -->
[azure_cli]: https://docs.microsoft.com/cli/azure/
[azure_portal]: https://portal.azure.com/
[azure_subscription]: https://azure.microsoft.com/free/
[cla]: https://cla.microsoft.com
[coc_contact]: mailto:opencode@microsoft.com
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[cognitive_auth]: https://docs.microsoft.com/azure/cognitive-services/authentication/
[contributing]: https://github.com/Azure/azure-sdk-for-python/blob/main/CONTRIBUTING.md
[python_logging]: https://docs.python.org/3/library/logging.html
[sdk_logging_docs]: https://docs.microsoft.com/azure/developer/python/azure-sdk-logging
[azure_core_ref_docs]: https://azuresdkdocs.blob.core.windows.net/$web/python/azure-core/latest/azure.core.html
[azure_core_readme]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md
[pip_link]:https://pypi.org/project/pip/
[conversationallanguage_client_src]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/cognitivelanguage/azure-ai-language-conversations
[conversationallanguage_pypi_package]: https://pypi.org/project/azure-ai-language-conversations/
[api_reference_documentation]:https://azuresdkdocs.blob.core.windows.net/$web/python/azure-ai-language-conversations/latest/azure.ai.language.conversations.html
[conversationallanguage_refdocs]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/cognitivelanguage/azure-ai-language-conversations
[conversationallanguage_docs]: https://docs.microsoft.com/azure/cognitive-services/language-service/conversational-language-understanding/overview
[conversationallanguage_samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/cognitivelanguage/azure-ai-language-conversations/samples/README.md
[conversationallanguage_restdocs]: https://learn.microsoft.com/rest/api/language/
[conversationanalysisclient_class]: https://azuresdkdocs.blob.core.windows.net/$web/python/azure-ai-language-conversations/latest/azure.ai.language.conversations.html#azure.ai.language.conversations.ConversationAnalysisClient
[conversationauthoringclient_class]: https://azuresdkdocs.blob.core.windows.net/$web/python/azure-ai-language-conversations/latest/azure.ai.language.conversations.html#azure.ai.language.conversations.ConversationAuthoringClient
[azure_core_exceptions]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md
[azure_language_portal]: https://language.cognitive.azure.com/home
[cognitive_authentication_aad]: https://docs.microsoft.com/azure/cognitive-services/authentication#authenticate-with-azure-active-directory
[azure_identity_credentials]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#credentials
[custom_subdomain]: https://docs.microsoft.com/azure/cognitive-services/authentication#create-a-resource-with-a-custom-subdomain
[install_azure_identity]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#install-the-package
[register_aad_app]: https://docs.microsoft.com/azure/cognitive-services/authentication#assign-a-role-to-a-service-principal
[grant_role_access]: https://docs.microsoft.com/azure/cognitive-services/authentication#assign-a-role-to-a-service-principal
[default_azure_credential]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#defaultazurecredential
[conversationanalysis_restdocs]: https://learn.microsoft.com/rest/api/language/2022-10-01-preview/conversation-analysis-runtime
[conversationanalysis_restdocs_authoring]: https://learn.microsoft.com/rest/api/language/2022-10-01-preview/conversational-analysis-authoring

![Impressions](https://azure-sdk-impressions.azurewebsites.net/api/impressions/azure-sdk-for-python%2Fsdk%2Ftemplate%2Fazure-template%2FREADME.png)