File: README.md

package info (click to toggle)
python-azure 20230112%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 749,544 kB
  • sloc: python: 6,815,827; javascript: 287; makefile: 195; xml: 109; sh: 105
file content (637 lines) | stat: -rw-r--r-- 30,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# Azure Form Recognizer client library for Python

Azure Form Recognizer is a cloud service that uses machine learning to analyze text and structured data from your documents. It includes the following main features:

- Layout - Extract content and structure (ex. words, selection marks, tables) from documents.
- Document - Analyze key-value pairs in addition to general layout from documents.
- Read - Read page information and detected languages from documents.
- Prebuilt - Extract common field values from select document types (ex. receipts, invoices, business cards, ID documents, U.S. W-2 tax documents, among others) using prebuilt models.
- Custom - Build custom models from your own data to extract tailored field values in addition to general layout from documents.

[Source code][python-fr-src] | [Package (PyPI)][python-fr-pypi] | [API reference documentation][python-fr-ref-docs] | [Product documentation][python-fr-product-docs] | [Samples][python-fr-samples]

## _Disclaimer_

_Azure SDK Python packages support for Python 2.7 ended 01 January 2022. For more information and questions, please refer to https://github.com/Azure/azure-sdk-for-python/issues/20691_

## Getting started

### Prerequisites
* Python 3.7 or later is required to use this package.
* You must have an [Azure subscription][azure_subscription] and a
[Cognitive Services or Form Recognizer resource][FR_or_CS_resource] to use this package.

### Install the package
Install the Azure Form Recognizer client library for Python with [pip][pip]:

```bash
pip install azure-ai-formrecognizer
```

> Note: This version of the client library defaults to the `2022-08-31` version of the service.

This table shows the relationship between SDK versions and supported API versions of the service:

|SDK version|Supported API version of service
|-|-
|3.2.0 - Latest GA release | 2.0, 2.1, 2022-08-31 (default)
|3.1.X| 2.0, 2.1 (default)
|3.0.0| 2.0

> Note: Starting with version `3.2.X`, a new set of clients were introduced to leverage the newest features
> of the Form Recognizer service. Please see the [Migration Guide][migration-guide] for detailed instructions on how to update application
> code from client library version `3.1.X` or lower to the latest version. Additionally, see the [Changelog][changelog] for more detailed information.
> The below table describes the relationship of each client and its supported API version(s):

|API version|Supported clients
|-|-
|2022-08-31 | DocumentAnalysisClient and DocumentModelAdministrationClient
|2.1 | FormRecognizerClient and FormTrainingClient
|2.0 | FormRecognizerClient and FormTrainingClient

#### Create a Cognitive Services or Form Recognizer resource
Form Recognizer supports both [multi-service and single-service access][cognitive_resource_portal]. Create a Cognitive Services resource if you plan to access multiple cognitive services under a single endpoint/key. For Form Recognizer access only, create a Form Recognizer resource. Please note that you will need a single-service resource if you intend to use [Azure Active Directory authentication](#create-the-client-with-an-azure-active-directory-credential).

You can create either resource using: 

* Option 1: [Azure Portal][cognitive_resource_portal].
* Option 2: [Azure CLI][cognitive_resource_cli].

Below is an example of how you can create a Form Recognizer resource using the CLI:

```PowerShell
# Create a new resource group to hold the form recognizer resource
# if using an existing resource group, skip this step
az group create --name <your-resource-name> --location <location>
```

```PowerShell
# Create form recognizer
az cognitiveservices account create \
    --name <your-resource-name> \
    --resource-group <your-resource-group-name> \
    --kind FormRecognizer \
    --sku <sku> \
    --location <location> \
    --yes
```

For more information about creating the resource or how to get the location and sku information see [here][cognitive_resource_cli].

### Authenticate the client
In order to interact with the Form Recognizer service, you will need to create an instance of a client.
An **endpoint** and **credential** are necessary to instantiate the client object.


#### Get the endpoint
You can find the endpoint for your Form Recognizer resource using the
[Azure Portal][azure_portal_get_endpoint]
or [Azure CLI][azure_cli_endpoint_lookup]:

```bash
# Get the endpoint for the form recognizer resource
az cognitiveservices account show --name "resource-name" --resource-group "resource-group-name" --query "properties.endpoint"
```

Either a regional endpoint or a custom subdomain can be used for authentication. They are formatted as follows:

```
Regional endpoint: https://<region>.api.cognitive.microsoft.com/
Custom subdomain: https://<resource-name>.cognitiveservices.azure.com/
```

A regional endpoint is the same for every resource in a region. A complete list of supported regional endpoints can be consulted [here][regional_endpoints]. Please note that regional endpoints do not support AAD authentication.

A custom subdomain, on the other hand, is a name that is unique to the Form Recognizer resource. They can only be used by [single-service resources][cognitive_resource_portal].

#### Get the API key

The API key can be found in the [Azure Portal][azure_portal] or by running the following Azure CLI command:

```bash
az cognitiveservices account keys list --name "<resource-name>" --resource-group "<resource-group-name>"
```

#### Create the client with AzureKeyCredential

To use an [API key][cognitive_authentication_api_key] as the `credential` parameter,
pass the key as a string into an instance of [AzureKeyCredential][azure-key-credential].

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentAnalysisClient

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api_key>")
document_analysis_client = DocumentAnalysisClient(endpoint, credential)
```

#### Create the client with an Azure Active Directory credential

`AzureKeyCredential` authentication is used in the examples in this getting started guide, but you can also
authenticate with Azure Active Directory using the [azure-identity][azure_identity] library.
Note that regional endpoints do not support AAD authentication. Create a [custom subdomain][custom_subdomain]
name for your resource in order to use this type of authentication.

To use the [DefaultAzureCredential][default_azure_credential] type shown below, or other credential types provided
with the Azure SDK, please install the `azure-identity` package:

```pip install azure-identity```

You will also need to [register a new AAD application and grant access][register_aad_app] to Form Recognizer by assigning the `"Cognitive Services User"` role to your service principal.

Once completed, set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables:
`AZURE_CLIENT_ID`, `AZURE_TENANT_ID`, `AZURE_CLIENT_SECRET`.

```python
from azure.identity import DefaultAzureCredential
from azure.ai.formrecognizer import DocumentAnalysisClient

credential = DefaultAzureCredential()
document_analysis_client = DocumentAnalysisClient(
    endpoint="https://<my-custom-subdomain>.cognitiveservices.azure.com/",
    credential=credential
)
```

## Key concepts

### DocumentAnalysisClient
`DocumentAnalysisClient` provides operations for analyzing input documents using prebuilt and custom models through the `begin_analyze_document` and `begin_analyze_document_from_url` APIs.
Use the `model_id` parameter to select the type of model for analysis. See a full list of supported models [here][fr-models].

Sample code snippets are provided to illustrate using a DocumentAnalysisClient [here](#examples "Examples").
More information about analyzing documents, including supported features, locales, and document types can be found in the [service documentation][fr-models].

### DocumentModelAdministrationClient
`DocumentModelAdministrationClient` provides operations for:

- Building custom models to analyze specific fields you specify by labeling your custom documents. A `DocumentModelDetails` is returned indicating the document type(s) the model can analyze, as well as the estimated confidence for each field. See the [service documentation][fr-build-model] for a more detailed explanation.
- Creating a composed model from a collection of existing models.
- Managing models created in your account.
- Listing operations or getting a specific model operation created within the last 24 hours.
- Copying a custom model from one Form Recognizer resource to another.

Please note that models can also be built using a graphical user interface such as [Form Recognizer Studio][fr-studio].

Sample code snippets are provided to illustrate using a DocumentModelAdministrationClient [here](#examples "Examples").

### Long-running operations
Long-running operations are operations which consist of an initial request sent to the service to start an operation,
followed by polling the service at intervals to determine whether the operation has completed or failed, and if it has
succeeded, to get the result.

Methods that analyze documents, build models, or copy/compose models are modeled as long-running operations.
The client exposes a `begin_<method-name>` method that returns an `LROPoller` or `AsyncLROPoller`. Callers should wait
for the operation to complete by calling `result()` on the poller object returned from the `begin_<method-name>` method.
Sample code snippets are provided to illustrate using long-running operations [below](#examples "Examples").


## Examples

The following section provides several code snippets covering some of the most common Form Recognizer tasks, including:

* [Extract Layout](#extract-layout "Extract Layout")
* [Using the General Document Model](#using-the-general-document-model "Using the General Document Model")
* [Using Prebuilt Models](#using-prebuilt-models "Using Prebuilt Models")
* [Build a Custom Model](#build-a-custom-model "Build a custom model")
* [Analyze Documents Using a Custom Model](#analyze-documents-using-a-custom-model "Analyze Documents Using a Custom Model")
* [Manage Your Models](#manage-your-models "Manage Your Models")


### Extract Layout
Extract text, selection marks, text styles, and table structures, along with their bounding region coordinates, from documents.

```python
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api_key>")

document_analysis_client = DocumentAnalysisClient(endpoint, credential)

with open("<path to your document>", "rb") as fd:
    document = fd.read()

poller = document_analysis_client.begin_analyze_document("prebuilt-layout", document)
result = poller.result()

for page in result.pages:
    print("----Analyzing layout from page #{}----".format(page.page_number))
    print(
        "Page has width: {} and height: {}, measured with unit: {}".format(
            page.width, page.height, page.unit
        )
    )

    for line_idx, line in enumerate(page.lines):
        print(
            "...Line # {} has content '{}' within bounding polygon '{}'".format(
                line_idx,
                line.content,
                line.polygon,
            )
        )

    for word in page.words:
        print(
            "...Word '{}' has a confidence of {}".format(
                word.content, word.confidence
            )
        )

    for selection_mark in page.selection_marks:
        print(
            "...Selection mark is '{}' within bounding polygon '{}' and has a confidence of {}".format(
                selection_mark.state,
                selection_mark.polygon,
                selection_mark.confidence,
            )
        )

for table_idx, table in enumerate(result.tables):
    print(
        "Table # {} has {} rows and {} columns".format(
            table_idx, table.row_count, table.column_count
        )
    )
    for region in table.bounding_regions:
        print(
            "Table # {} location on page: {} is {}".format(
                table_idx,
                region.page_number,
                region.polygon
            )
        )
    for cell in table.cells:
        print(
            "...Cell[{}][{}] has content '{}'".format(
                cell.row_index,
                cell.column_index,
                cell.content,
            )
        )
```

### Using the General Document Model
Analyze key-value pairs, tables, styles, and selection marks from documents using the general document model provided by the Form Recognizer service.
Select the General Document Model by passing `model_id="prebuilt-document"` into the `begin_analyze_document` method:

```python
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api_key>")

document_analysis_client = DocumentAnalysisClient(endpoint, credential)

with open("<path to your document>", "rb") as fd:
    document = fd.read()

poller = document_analysis_client.begin_analyze_document("prebuilt-document", document)
result = poller.result()

print("----Key-value pairs found in document----")
for kv_pair in result.key_value_pairs:
    if kv_pair.key:
        print(
                "Key '{}' found within '{}' bounding regions".format(
                    kv_pair.key.content,
                    kv_pair.key.bounding_regions,
                )
            )
    if kv_pair.value:
        print(
                "Value '{}' found within '{}' bounding regions\n".format(
                    kv_pair.value.content,
                    kv_pair.value.bounding_regions,
                )
            )

print("----Tables found in document----")
for table_idx, table in enumerate(result.tables):
    print(
        "Table # {} has {} rows and {} columns".format(
            table_idx, table.row_count, table.column_count
        )
    )
    for region in table.bounding_regions:
        print(
            "Table # {} location on page: {} is {}".format(
                table_idx,
                region.page_number,
                region.polygon,
            )
        )

print("----Styles found in document----")
for style in result.styles:
    if style.is_handwritten:
        print("Document contains handwritten content: ")
        print(",".join([result.content[span.offset:span.offset + span.length] for span in style.spans]))

for page in result.pages:
    print("----Analyzing document from page #{}----".format(page.page_number))
    print(
        "Page has width: {} and height: {}, measured with unit: {}".format(
            page.width, page.height, page.unit
        )
    )

    for line_idx, line in enumerate(page.lines):
        words = line.get_words()
        print(
            "...Line # {} has {} words and text '{}' within bounding polygon '{}'".format(
                line_idx,
                len(words),
                line.content,
                line.polygon,
            )
        )

        for word in words:
            print(
                "......Word '{}' has a confidence of {}".format(
                    word.content, word.confidence
                )
            )

    for selection_mark in page.selection_marks:
        print(
            "...Selection mark is '{}' within bounding polygon '{}' and has a confidence of {}".format(
                selection_mark.state,
                selection_mark.polygon,
                selection_mark.confidence,
            )
        )
```

- Read more about the features provided by the `prebuilt-document` model [here][service_prebuilt_document].

### Using Prebuilt Models
Extract fields from select document types such as receipts, invoices, business cards, identity documents, and U.S. W-2 tax documents using prebuilt models provided by the Form Recognizer service.

For example, to analyze fields from a sales receipt, use the prebuilt receipt model provided by passing `model_id="prebuilt-receipt"` into the `begin_analyze_document` method:

```python
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api_key>")

document_analysis_client = DocumentAnalysisClient(endpoint, credential)

with open("<path to your receipt>", "rb") as fd:
    receipt = fd.read()

poller = document_analysis_client.begin_analyze_document("prebuilt-receipt", receipt)
result = poller.result()

for receipt in result.documents:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, item in enumerate(field.value):
                print("...Item #{}".format(idx+1))
                for item_field_name, item_field in item.value.items():
                    print("......{}: {} has confidence {}".format(
                        item_field_name, item_field.value, item_field.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))
```

You are not limited to receipts! There are a few prebuilt models to choose from, each of which has its own set of supported fields. See other supported prebuilt models [here][fr-models].

### Build a Custom Model
Build a custom model on your own document type. The resulting model can be used to analyze values from the types of documents it was trained on.
Provide a container SAS URL to your Azure Storage Blob container where you're storing the training documents.

More details on setting up a container and required file structure can be found in the [service documentation][fr-build-training-set].

```python
from azure.ai.formrecognizer import DocumentModelAdministrationClient
from azure.core.credentials import AzureKeyCredential

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api_key>")

document_model_admin_client = DocumentModelAdministrationClient(endpoint, credential)

container_sas_url = "<container-sas-url>"  # training documents uploaded to blob storage
poller = document_model_admin_client.begin_build_document_model(
    # For more information about build_mode, see: https://aka.ms/azsdk/formrecognizer/buildmode
    build_mode="template", blob_container_url=container_sas_url, model_id="my-first-model"
)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Description: {}".format(model.description))
print("Model created on: {}\n".format(model.created_on))
print("Doc types the model can recognize:")
for name, doc_type in model.doc_types.items():
    print("\nDoc Type: '{}' which has the following fields:".format(name))
    for field_name, confidence in doc_type.field_confidence.items():
        print("Field: '{}' has confidence score {}".format(field_name, confidence))
```


### Analyze Documents Using a Custom Model
Analyze document fields, tables, selection marks, and more. These models are trained with your own data, so they're tailored to your documents.
For best results, you should only analyze documents of the same document type that the custom model was built with.

```python
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api_key>")

document_analysis_client = DocumentAnalysisClient(endpoint, credential)
model_id = "<your custom model id>"

with open("<path to your document>", "rb") as fd:
    document = fd.read()

poller = document_analysis_client.begin_analyze_document(model_id=model_id, document=document)
result = poller.result()

for analyzed_document in result.documents:
    print("Document was analyzed by model with ID {}".format(result.model_id))
    print("Document has confidence {}".format(analyzed_document.confidence))
    for name, field in analyzed_document.fields.items():
        print("Field '{}' has value '{}' with confidence of {}".format(name, field.value, field.confidence))
    
# iterate over lines, words, and selection marks on each page of the document
for page in result.pages:
    print("\nLines found on page {}".format(page.page_number))
    for line in page.lines:
        print("...Line '{}'".format(line.content))
    print("\nWords found on page {}".format(page.page_number))
    for word in page.words:
        print(
            "...Word '{}' has a confidence of {}".format(
                word.content, word.confidence
            )
        )
    print("\nSelection marks found on page {}".format(page.page_number))
    for selection_mark in page.selection_marks:
        print(
            "...Selection mark is '{}' and has a confidence of {}".format(
                selection_mark.state, selection_mark.confidence
            )
        )

# iterate over tables in document
for i, table in enumerate(result.tables):
    print("\nTable {} can be found on page:".format(i + 1))
    for region in table.bounding_regions:
        print("...{}".format(region.page_number))
    for cell in table.cells:
        print(
            "...Cell[{}][{}] has content '{}'".format(
                cell.row_index, cell.column_index, cell.content
            )
        )
```

Alternatively, a document URL can also be used to analyze documents using the `begin_analyze_document_from_url` method.

```python
document_url = "<url_of_the_document>"
poller = document_analysis_client.begin_analyze_document_from_url(model_id=model_id, document_url=document_url)
result = poller.result()
```

### Manage Your Models
Manage the custom models attached to your account.

```python
from azure.ai.formrecognizer import DocumentModelAdministrationClient
from azure.core.credentials import AzureKeyCredential
from azure.core.exceptions import ResourceNotFoundError

endpoint = "https://<my-custom-subdomain>.cognitiveservices.azure.com/"
credential = AzureKeyCredential("<api_key>")

document_model_admin_client = DocumentModelAdministrationClient(endpoint, credential)

account_details = document_model_admin_client.get_resource_details()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_details.custom_document_models.count, account_details.custom_document_models.limit
))

# Here we get a paged list of all of our models
models = document_model_admin_client.list_document_models()
print("We have models with the following ids: {}".format(
    ", ".join([m.model_id for m in models])
))

# Replace with the custom model ID from the "Build a model" sample
model_id = "<model_id from the Build a Model sample>"

custom_model = document_model_admin_client.get_document_model(model_id=model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Description: {}".format(custom_model.description))
print("Model created on: {}\n".format(custom_model.created_on))

# Finally, we will delete this model by ID
document_model_admin_client.delete_document_model(model_id=custom_model.model_id)

try:
    document_model_admin_client.get_document_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
```

## Troubleshooting

### General
Form Recognizer client library will raise exceptions defined in [Azure Core][azure_core_exceptions].
Error codes and messages raised by the Form Recognizer service can be found in the [service documentation][fr-errors].

### Logging
This library uses the standard
[logging][python_logging] library for logging.

Basic information about HTTP sessions (URLs, headers, etc.) is logged at `INFO` level.

Detailed `DEBUG` level logging, including request/response bodies and **unredacted**
headers, can be enabled on the client or per-operation with the `logging_enable` keyword argument.

See full SDK logging documentation with examples [here][sdk_logging_docs].

### Optional Configuration

Optional keyword arguments can be passed in at the client and per-operation level.
The azure-core [reference documentation][azure_core_ref_docs]
describes available configurations for retries, logging, transport protocols, and more.

## Next steps

### More sample code

See the [Sample README][sample_readme] for several code snippets illustrating common patterns used in the Form Recognizer Python API.

### Additional documentation

For more extensive documentation on Azure Cognitive Services Form Recognizer, see the [Form Recognizer documentation][python-fr-product-docs] on docs.microsoft.com.

## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit [cla.microsoft.com][cla].

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information see the [Code of Conduct FAQ][coc_faq] or contact [opencode@microsoft.com][coc_contact] with any additional questions or comments.

<!-- LINKS -->

[python-fr-src]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/formrecognizer/azure-ai-formrecognizer/azure/ai/formrecognizer
[python-fr-pypi]: https://pypi.org/project/azure-ai-formrecognizer/
[python-fr-product-docs]: https://learn.microsoft.com/azure/applied-ai-services/form-recognizer/overview?view=form-recog-3.0.0
[python-fr-ref-docs]: https://aka.ms/azsdk/python/formrecognizer/docs
[python-fr-samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/formrecognizer/azure-ai-formrecognizer/samples

[azure_subscription]: https://azure.microsoft.com/free/
[azure_portal]: https://ms.portal.azure.com/
[regional_endpoints]: https://azure.microsoft.com/global-infrastructure/services/?products=form-recognizer
[FR_or_CS_resource]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows
[pip]: https://pypi.org/project/pip/
[cognitive_resource_portal]: https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesFormRecognizer
[cognitive_resource_cli]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account-cli?tabs=windows
[azure-key-credential]: https://aka.ms/azsdk/python/core/azurekeycredential
[labeling-tool]: https://aka.ms/azsdk/formrecognizer/labelingtool
[fr-studio]: https://aka.ms/azsdk/formrecognizer/formrecognizerstudio
[fr-build-model]: https://aka.ms/azsdk/formrecognizer/buildmodel
[fr-build-training-set]: https://aka.ms/azsdk/formrecognizer/buildtrainingset
[fr-models]: https://aka.ms/azsdk/formrecognizer/models
[fr-errors]: https://aka.ms/azsdk/formrecognizer/errors

[azure_core_ref_docs]: https://aka.ms/azsdk/python/core/docs
[azure_core_exceptions]: https://aka.ms/azsdk/python/core/docs#module-azure.core.exceptions
[python_logging]: https://docs.python.org/3/library/logging.html
[multi_and_single_service]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows
[azure_cli_endpoint_lookup]: https://docs.microsoft.com/cli/azure/cognitiveservices/account?view=azure-cli-latest#az-cognitiveservices-account-show
[azure_portal_get_endpoint]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows#get-the-keys-for-your-resource
[cognitive_authentication_api_key]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows#get-the-keys-for-your-resource
[register_aad_app]: https://docs.microsoft.com/azure/cognitive-services/authentication#assign-a-role-to-a-service-principal
[custom_subdomain]: https://docs.microsoft.com/azure/cognitive-services/authentication#create-a-resource-with-a-custom-subdomain
[azure_identity]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity
[default_azure_credential]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#defaultazurecredential
[service_recognize_receipt]: https://aka.ms/azsdk/formrecognizer/receiptfieldschema
[service_recognize_business_cards]: https://aka.ms/azsdk/formrecognizer/businesscardfieldschema
[service_recognize_invoice]: https://aka.ms/azsdk/formrecognizer/invoicefieldschema
[service_recognize_identity_documents]: https://aka.ms/azsdk/formrecognizer/iddocumentfieldschema
[service_recognize_tax_documents]: https://aka.ms/azsdk/formrecognizer/taxusw2fieldschema
[service_prebuilt_document]: https://docs.microsoft.com/azure/applied-ai-services/form-recognizer/concept-general-document#general-document-features
[sdk_logging_docs]: https://docs.microsoft.com/azure/developer/python/sdk/azure-sdk-logging
[sample_readme]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/formrecognizer/azure-ai-formrecognizer/samples
[changelog]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/formrecognizer/azure-ai-formrecognizer/CHANGELOG.md
[migration-guide]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/formrecognizer/azure-ai-formrecognizer/MIGRATION_GUIDE.md

[cla]: https://cla.microsoft.com
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
[coc_contact]: mailto:opencode@microsoft.com