File: sample_analyze_general_documents.py

package info (click to toggle)
python-azure 20230112%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 749,544 kB
  • sloc: python: 6,815,827; javascript: 287; makefile: 195; xml: 109; sh: 105
file content (152 lines) | stat: -rw-r--r-- 5,302 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_analyze_general_documents.py

DESCRIPTION:
    This sample demonstrates how to extract general document information from a document
    given through a file.

USAGE:
    python sample_analyze_general_documents.py

    Set the environment variables with your own values before running the sample:
    1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Form Recognizer resource.
    2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key
"""

import os

def format_bounding_region(bounding_regions):
    if not bounding_regions:
        return "N/A"
    return ", ".join("Page #{}: {}".format(region.page_number, format_polygon(region.polygon)) for region in bounding_regions)

def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])


def analyze_general_documents():
    path_to_sample_documents = os.path.abspath(
        os.path.join(
            os.path.abspath(__file__),
            "..",
            "..",
            "./sample_forms/forms/form_selection_mark.png",
        )
    )

    from azure.core.credentials import AzureKeyCredential
    from azure.ai.formrecognizer import DocumentAnalysisClient

    endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
    key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )
    with open(path_to_sample_documents, "rb") as f:
        poller = document_analysis_client.begin_analyze_document(
            "prebuilt-document", document=f
        )
    result = poller.result()

    for style in result.styles:
        if style.is_handwritten:
            print("Document contains handwritten content: ")
            print(",".join([result.content[span.offset:span.offset + span.length] for span in style.spans]))

    print("----Key-value pairs found in document----")
    for kv_pair in result.key_value_pairs:
        if kv_pair.key:
            print(
                    "Key '{}' found within '{}' bounding regions".format(
                        kv_pair.key.content,
                        format_bounding_region(kv_pair.key.bounding_regions),
                    )
                )
        if kv_pair.value:
            print(
                    "Value '{}' found within '{}' bounding regions\n".format(
                        kv_pair.value.content,
                        format_bounding_region(kv_pair.value.bounding_regions),
                    )
                )

    for page in result.pages:
        print("----Analyzing document from page #{}----".format(page.page_number))
        print(
            "Page has width: {} and height: {}, measured with unit: {}".format(
                page.width, page.height, page.unit
            )
        )

        for line_idx, line in enumerate(page.lines):
            words = line.get_words()
            print(
                "...Line # {} has {} words and text '{}' within bounding polygon '{}'".format(
                    line_idx,
                    len(words),
                    line.content,
                    format_polygon(line.polygon),
                )
            )

            for word in words:
                print(
                    "......Word '{}' has a confidence of {}".format(
                        word.content, word.confidence
                    )
                )

        for selection_mark in page.selection_marks:
            print(
                "...Selection mark is '{}' within bounding polygon '{}' and has a confidence of {}".format(
                    selection_mark.state,
                    format_polygon(selection_mark.polygon),
                    selection_mark.confidence,
                )
            )

    for table_idx, table in enumerate(result.tables):
        print(
            "Table # {} has {} rows and {} columns".format(
                table_idx, table.row_count, table.column_count
            )
        )
        for region in table.bounding_regions:
            print(
                "Table # {} location on page: {} is {}".format(
                    table_idx,
                    region.page_number,
                    format_polygon(region.polygon),
                )
            )
        for cell in table.cells:
            print(
                "...Cell[{}][{}] has content '{}'".format(
                    cell.row_index,
                    cell.column_index,
                    cell.content,
                )
            )
            for region in cell.bounding_regions:
                print(
                    "...content on page {} is within bounding polygon '{}'\n".format(
                        region.page_number,
                        format_polygon(region.polygon),
                    )
                )
    print("----------------------------------------")


if __name__ == "__main__":
    analyze_general_documents()