File: sample_analyze_layout.py

package info (click to toggle)
python-azure 20230112%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 749,544 kB
  • sloc: python: 6,815,827; javascript: 287; makefile: 195; xml: 109; sh: 105
file content (138 lines) | stat: -rw-r--r-- 4,666 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_analyze_layout.py

DESCRIPTION:
    This sample demonstrates how to extract text, selection marks, and layout information from a document
    given through a file.

    Note that selection marks returned from begin_analyze_document(model_id="prebuilt-layout") do not return the text
    associated with the checkbox. For the API to return this information, build a custom model to analyze the
    checkbox and its text. See sample_build_model.py for more information.

USAGE:
    python sample_analyze_layout.py

    Set the environment variables with your own values before running the sample:
    1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Form Recognizer resource.
    2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key
"""

import os


def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])


def analyze_layout():
    path_to_sample_documents = os.path.abspath(
        os.path.join(
            os.path.abspath(__file__),
            "..",
            "..",
            "./sample_forms/forms/form_selection_mark.png",
        )
    )

    from azure.core.credentials import AzureKeyCredential
    from azure.ai.formrecognizer import DocumentAnalysisClient

    endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
    key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )
    with open(path_to_sample_documents, "rb") as f:
        poller = document_analysis_client.begin_analyze_document(
            "prebuilt-layout", document=f
        )
    result = poller.result()

    for idx, style in enumerate(result.styles):
        print(
            "Document contains {} content".format(
                "handwritten" if style.is_handwritten else "no handwritten"
            )
        )

    for page in result.pages:
        print("----Analyzing layout from page #{}----".format(page.page_number))
        print(
            "Page has width: {} and height: {}, measured with unit: {}".format(
                page.width, page.height, page.unit
            )
        )

        for line_idx, line in enumerate(page.lines):
            words = line.get_words()
            print(
                "...Line # {} has word count {} and text '{}' within bounding polygon '{}'".format(
                    line_idx,
                    len(words),
                    line.content,
                    format_polygon(line.polygon),
                )
            )

            for word in words:
                print(
                    "......Word '{}' has a confidence of {}".format(
                        word.content, word.confidence
                    )
                )

        for selection_mark in page.selection_marks:
            print(
                "...Selection mark is '{}' within bounding polygon '{}' and has a confidence of {}".format(
                    selection_mark.state,
                    format_polygon(selection_mark.polygon),
                    selection_mark.confidence,
                )
            )

    for table_idx, table in enumerate(result.tables):
        print(
            "Table # {} has {} rows and {} columns".format(
                table_idx, table.row_count, table.column_count
            )
        )
        for region in table.bounding_regions:
            print(
                "Table # {} location on page: {} is {}".format(
                    table_idx,
                    region.page_number,
                    format_polygon(region.polygon),
                )
            )
        for cell in table.cells:
            print(
                "...Cell[{}][{}] has content '{}'".format(
                    cell.row_index,
                    cell.column_index,
                    cell.content,
                )
            )
            for region in cell.bounding_regions:
                print(
                    "...content on page {} is within bounding polygon '{}'".format(
                        region.page_number,
                        format_polygon(region.polygon),
                    )
                )

    print("----------------------------------------")


if __name__ == "__main__":
    analyze_layout()