File: sample_analyze_read.py

package info (click to toggle)
python-azure 20230112%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 749,544 kB
  • sloc: python: 6,815,827; javascript: 287; makefile: 195; xml: 109; sh: 105
file content (110 lines) | stat: -rw-r--r-- 3,873 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_analyze_read.py

DESCRIPTION:
    This sample demonstrates how to extract document information using "prebuilt-read"
    to analyze a given file.

USAGE:
    python sample_analyze_read.py

    Set the environment variables with your own values before running the sample:
    1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Form Recognizer resource.
    2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key
"""

import os

def format_bounding_region(bounding_regions):
    if not bounding_regions:
        return "N/A"
    return ", ".join("Page #{}: {}".format(region.page_number, format_polygon(region.polygon)) for region in bounding_regions)

def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])

def analyze_read():
    path_to_sample_documents = os.path.abspath(
        os.path.join(
            os.path.abspath(__file__),
            "..",
            "..",
            "./sample_forms/forms/Form_1.jpg",
        )
    )

    from azure.core.credentials import AzureKeyCredential
    from azure.ai.formrecognizer import DocumentAnalysisClient

    endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
    key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )
    with open(path_to_sample_documents, "rb") as f:
        poller = document_analysis_client.begin_analyze_document(
            "prebuilt-read", document=f
        )
    result = poller.result()

    print("----Languages detected in the document----")
    for language in result.languages:
        print("Language code: '{}' with confidence {}".format(language.locale, language.confidence))

    for page in result.pages:
        print("----Analyzing document from page #{}----".format(page.page_number))
        print(
            "Page has width: {} and height: {}, measured with unit: {}".format(
                page.width, page.height, page.unit
            )
        )

        for line_idx, line in enumerate(page.lines):
            words = line.get_words()
            print(
                "...Line # {} has {} words and text '{}' within bounding polygon '{}'".format(
                    line_idx,
                    len(words),
                    line.content,
                    format_polygon(line.polygon),
                )
            )

            for word in words:
                print(
                    "......Word '{}' has a confidence of {}".format(
                        word.content, word.confidence
                    )
                )

        for selection_mark in page.selection_marks:
            print(
                "...Selection mark is '{}' within bounding polygon '{}' and has a confidence of {}".format(
                    selection_mark.state,
                    format_polygon(selection_mark.polygon),
                    selection_mark.confidence,
                )
            )

    if len(result.paragraphs) > 0:
        print("----Detected #{} paragraphs in the document----".format(len(result.paragraphs)))
        for paragraph in result.paragraphs:
            print("Found paragraph with role: '{}' within {} bounding region".format(paragraph.role, format_bounding_region(paragraph.bounding_regions)))
            print("...with content: '{}'".format(paragraph.content))

    print("----------------------------------------")


if __name__ == "__main__":
    analyze_read()