1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
# coding: utf-8
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
FILE: sample_detection_configuration.py
DESCRIPTION:
This sample demonstrates how to create, get, list, update, and delete anomaly detection configurations
under your Metrics Advisor account.
USAGE:
python sample_detection_configuration.py
Set the environment variables with your own values before running the sample:
1) METRICS_ADVISOR_ENDPOINT - the endpoint of your Azure Metrics Advisor service
2) METRICS_ADVISOR_SUBSCRIPTION_KEY - Metrics Advisor service subscription key
3) METRICS_ADVISOR_API_KEY - Metrics Advisor service API key
4) METRICS_ADVISOR_METRIC_ID - the ID of an metric from an existing data feed
"""
import os
def sample_create_detection_config():
# [START create_detection_config]
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
ChangeThresholdCondition,
HardThresholdCondition,
SmartDetectionCondition,
SuppressCondition,
MetricDetectionCondition,
)
service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")
metric_id = os.getenv("METRICS_ADVISOR_METRIC_ID")
client = MetricsAdvisorAdministrationClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key))
change_threshold_condition = ChangeThresholdCondition(
anomaly_detector_direction="Both",
change_percentage=20,
shift_point=10,
within_range=True,
suppress_condition=SuppressCondition(
min_number=5,
min_ratio=2
)
)
hard_threshold_condition = HardThresholdCondition(
anomaly_detector_direction="Up",
upper_bound=100,
suppress_condition=SuppressCondition(
min_number=2,
min_ratio=2
)
)
smart_detection_condition = SmartDetectionCondition(
anomaly_detector_direction="Up",
sensitivity=10,
suppress_condition=SuppressCondition(
min_number=2,
min_ratio=2
)
)
detection_config = client.create_detection_configuration(
name="my_detection_config",
metric_id=metric_id,
description="anomaly detection config for metric",
whole_series_detection_condition=MetricDetectionCondition(
condition_operator="OR",
change_threshold_condition=change_threshold_condition,
hard_threshold_condition=hard_threshold_condition,
smart_detection_condition=smart_detection_condition
)
)
return detection_config
# [END create_detection_config]
def sample_get_detection_config(detection_config_id):
# [START get_detection_config]
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")
client = MetricsAdvisorAdministrationClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key))
config = client.get_detection_configuration(detection_config_id)
print("Detection config name: {}".format(config.name))
print("Description: {}".format(config.description))
print("Metric ID: {}".format(config.metric_id))
print("\nDetection conditions specified for configuration...")
print("\nWhole Series Detection Conditions:\n")
conditions = config.whole_series_detection_condition
print("Use {} operator for multiple detection conditions".format(conditions.condition_operator))
print("Smart Detection Condition:")
print("- Sensitivity: {}".format(conditions.smart_detection_condition.sensitivity))
print("- Detection direction: {}".format(conditions.smart_detection_condition.anomaly_detector_direction))
print("- Suppress conditions: minimum number: {}; minimum ratio: {}".format(
conditions.smart_detection_condition.suppress_condition.min_number,
conditions.smart_detection_condition.suppress_condition.min_ratio
))
print("Hard Threshold Condition:")
print("- Lower bound: {}".format(conditions.hard_threshold_condition.lower_bound))
print("- Upper bound: {}".format(conditions.hard_threshold_condition.upper_bound))
print("- Detection direction: {}".format(conditions.smart_detection_condition.anomaly_detector_direction))
print("- Suppress conditions: minimum number: {}; minimum ratio: {}".format(
conditions.smart_detection_condition.suppress_condition.min_number,
conditions.smart_detection_condition.suppress_condition.min_ratio
))
print("Change Threshold Condition:")
print("- Change percentage: {}".format(conditions.change_threshold_condition.change_percentage))
print("- Shift point: {}".format(conditions.change_threshold_condition.shift_point))
print("- Detect anomaly if within range: {}".format(conditions.change_threshold_condition.within_range))
print("- Detection direction: {}".format(conditions.smart_detection_condition.anomaly_detector_direction))
print("- Suppress conditions: minimum number: {}; minimum ratio: {}".format(
conditions.smart_detection_condition.suppress_condition.min_number,
conditions.smart_detection_condition.suppress_condition.min_ratio
))
# [END get_detection_config]
def sample_list_detection_configs():
# [START list_detection_configs]
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")
metric_id = os.getenv("METRICS_ADVISOR_METRIC_ID")
client = MetricsAdvisorAdministrationClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key))
configs = client.list_detection_configurations(metric_id=metric_id)
for config in configs:
print("Detection config name: {}".format(config.name))
print("Description: {}".format(config.description))
print("Metric ID: {}\n".format(config.metric_id))
# [END list_detection_configs]
def sample_update_detection_config(detection_config):
# [START update_detection_config]
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
MetricSeriesGroupDetectionCondition,
MetricSingleSeriesDetectionCondition,
SmartDetectionCondition,
SuppressCondition
)
service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")
client = MetricsAdvisorAdministrationClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key))
detection_config.name = "updated config name"
detection_config.description = "updated with more detection conditions"
smart_detection_condition = SmartDetectionCondition(
anomaly_detector_direction="Up",
sensitivity=10,
suppress_condition=SuppressCondition(
min_number=2,
min_ratio=2
)
)
updated = client.update_detection_configuration(
detection_config,
series_group_detection_conditions=[
MetricSeriesGroupDetectionCondition(
series_group_key={"region": "Seoul"},
smart_detection_condition=smart_detection_condition
)
],
series_detection_conditions=[
MetricSingleSeriesDetectionCondition(
series_key={"region": "Osaka", "category": "Cell Phones"},
smart_detection_condition=smart_detection_condition
)
]
)
print("Updated detection name: {}".format(updated.name))
print("Updated detection description: {}".format(updated.description))
print("Updated detection condition for series group: {}".format(
updated.series_group_detection_conditions[0].series_group_key
))
print("Updated detection condition for series: {}".format(
updated.series_detection_conditions[0].series_key
))
# [END update_detection_config]
def sample_delete_detection_config(detection_config_id):
# [START delete_detection_config]
from azure.core.exceptions import ResourceNotFoundError
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")
client = MetricsAdvisorAdministrationClient(service_endpoint,
MetricsAdvisorKeyCredential(subscription_key, api_key))
client.delete_detection_configuration(detection_config_id)
try:
client.get_detection_configuration(detection_config_id)
except ResourceNotFoundError:
print("Detection configuration successfully deleted.")
# [END delete_detection_config]
if __name__ == '__main__':
print("---Creating anomaly detection configuration...")
detection_config = sample_create_detection_config()
print("Anomaly detection configuration successfully created...")
print("\n---Get an anomaly detection configuration...")
sample_get_detection_config(detection_config.id)
print("\n---List anomaly detection configurations...")
sample_list_detection_configs()
print("\n---Update an anomaly detection configuration...")
sample_update_detection_config(detection_config)
print("\n---Delete an anomaly detection configuration...")
sample_delete_detection_config(detection_config.id)
|