File: sample_detection_configuration.py

package info (click to toggle)
python-azure 20230112%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 749,544 kB
  • sloc: python: 6,815,827; javascript: 287; makefile: 195; xml: 109; sh: 105
file content (252 lines) | stat: -rw-r--r-- 10,485 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_detection_configuration.py

DESCRIPTION:
    This sample demonstrates how to create, get, list, update, and delete anomaly detection configurations
    under your Metrics Advisor account.

USAGE:
    python sample_detection_configuration.py

    Set the environment variables with your own values before running the sample:
    1) METRICS_ADVISOR_ENDPOINT - the endpoint of your Azure Metrics Advisor service
    2) METRICS_ADVISOR_SUBSCRIPTION_KEY - Metrics Advisor service subscription key
    3) METRICS_ADVISOR_API_KEY - Metrics Advisor service API key
    4) METRICS_ADVISOR_METRIC_ID - the ID of an metric from an existing data feed
"""

import os


def sample_create_detection_config():
    # [START create_detection_config]
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
    from azure.ai.metricsadvisor.models import (
        ChangeThresholdCondition,
        HardThresholdCondition,
        SmartDetectionCondition,
        SuppressCondition,
        MetricDetectionCondition,
    )

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")
    metric_id = os.getenv("METRICS_ADVISOR_METRIC_ID")

    client = MetricsAdvisorAdministrationClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    change_threshold_condition = ChangeThresholdCondition(
        anomaly_detector_direction="Both",
        change_percentage=20,
        shift_point=10,
        within_range=True,
        suppress_condition=SuppressCondition(
            min_number=5,
            min_ratio=2
        )
    )
    hard_threshold_condition = HardThresholdCondition(
        anomaly_detector_direction="Up",
        upper_bound=100,
        suppress_condition=SuppressCondition(
            min_number=2,
            min_ratio=2
        )
    )
    smart_detection_condition = SmartDetectionCondition(
        anomaly_detector_direction="Up",
        sensitivity=10,
        suppress_condition=SuppressCondition(
            min_number=2,
            min_ratio=2
        )
    )

    detection_config = client.create_detection_configuration(
        name="my_detection_config",
        metric_id=metric_id,
        description="anomaly detection config for metric",
        whole_series_detection_condition=MetricDetectionCondition(
            condition_operator="OR",
            change_threshold_condition=change_threshold_condition,
            hard_threshold_condition=hard_threshold_condition,
            smart_detection_condition=smart_detection_condition
        )
    )

    return detection_config
    # [END create_detection_config]


def sample_get_detection_config(detection_config_id):
    # [START get_detection_config]
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")

    client = MetricsAdvisorAdministrationClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    config = client.get_detection_configuration(detection_config_id)

    print("Detection config name: {}".format(config.name))
    print("Description: {}".format(config.description))
    print("Metric ID: {}".format(config.metric_id))

    print("\nDetection conditions specified for configuration...")
    print("\nWhole Series Detection Conditions:\n")
    conditions = config.whole_series_detection_condition

    print("Use {} operator for multiple detection conditions".format(conditions.condition_operator))

    print("Smart Detection Condition:")
    print("- Sensitivity: {}".format(conditions.smart_detection_condition.sensitivity))
    print("- Detection direction: {}".format(conditions.smart_detection_condition.anomaly_detector_direction))
    print("- Suppress conditions: minimum number: {}; minimum ratio: {}".format(
        conditions.smart_detection_condition.suppress_condition.min_number,
        conditions.smart_detection_condition.suppress_condition.min_ratio
    ))

    print("Hard Threshold Condition:")
    print("- Lower bound: {}".format(conditions.hard_threshold_condition.lower_bound))
    print("- Upper bound: {}".format(conditions.hard_threshold_condition.upper_bound))
    print("- Detection direction: {}".format(conditions.smart_detection_condition.anomaly_detector_direction))
    print("- Suppress conditions: minimum number: {}; minimum ratio: {}".format(
        conditions.smart_detection_condition.suppress_condition.min_number,
        conditions.smart_detection_condition.suppress_condition.min_ratio
    ))

    print("Change Threshold Condition:")
    print("- Change percentage: {}".format(conditions.change_threshold_condition.change_percentage))
    print("- Shift point: {}".format(conditions.change_threshold_condition.shift_point))
    print("- Detect anomaly if within range: {}".format(conditions.change_threshold_condition.within_range))
    print("- Detection direction: {}".format(conditions.smart_detection_condition.anomaly_detector_direction))
    print("- Suppress conditions: minimum number: {}; minimum ratio: {}".format(
        conditions.smart_detection_condition.suppress_condition.min_number,
        conditions.smart_detection_condition.suppress_condition.min_ratio
    ))

    # [END get_detection_config]


def sample_list_detection_configs():
    # [START list_detection_configs]
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")
    metric_id = os.getenv("METRICS_ADVISOR_METRIC_ID")

    client = MetricsAdvisorAdministrationClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    configs = client.list_detection_configurations(metric_id=metric_id)
    for config in configs:
        print("Detection config name: {}".format(config.name))
        print("Description: {}".format(config.description))
        print("Metric ID: {}\n".format(config.metric_id))

    # [END list_detection_configs]


def sample_update_detection_config(detection_config):
    # [START update_detection_config]
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
    from azure.ai.metricsadvisor.models import (
        MetricSeriesGroupDetectionCondition,
        MetricSingleSeriesDetectionCondition,
        SmartDetectionCondition,
        SuppressCondition
    )

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")

    client = MetricsAdvisorAdministrationClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    detection_config.name = "updated config name"
    detection_config.description = "updated with more detection conditions"
    smart_detection_condition = SmartDetectionCondition(
        anomaly_detector_direction="Up",
        sensitivity=10,
        suppress_condition=SuppressCondition(
            min_number=2,
            min_ratio=2
        )
    )

    updated = client.update_detection_configuration(
        detection_config,
        series_group_detection_conditions=[
            MetricSeriesGroupDetectionCondition(
                series_group_key={"region": "Seoul"},
                smart_detection_condition=smart_detection_condition
            )
        ],
        series_detection_conditions=[
            MetricSingleSeriesDetectionCondition(
                series_key={"region": "Osaka", "category": "Cell Phones"},
                smart_detection_condition=smart_detection_condition
            )
        ]
    )
    print("Updated detection name: {}".format(updated.name))
    print("Updated detection description: {}".format(updated.description))
    print("Updated detection condition for series group: {}".format(
        updated.series_group_detection_conditions[0].series_group_key
    ))
    print("Updated detection condition for series: {}".format(
        updated.series_detection_conditions[0].series_key
    ))

    # [END update_detection_config]


def sample_delete_detection_config(detection_config_id):
    # [START delete_detection_config]
    from azure.core.exceptions import ResourceNotFoundError
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")

    client = MetricsAdvisorAdministrationClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    client.delete_detection_configuration(detection_config_id)

    try:
        client.get_detection_configuration(detection_config_id)
    except ResourceNotFoundError:
        print("Detection configuration successfully deleted.")
    # [END delete_detection_config]


if __name__ == '__main__':
    print("---Creating anomaly detection configuration...")
    detection_config = sample_create_detection_config()
    print("Anomaly detection configuration successfully created...")
    print("\n---Get an anomaly detection configuration...")
    sample_get_detection_config(detection_config.id)
    print("\n---List anomaly detection configurations...")
    sample_list_detection_configs()
    print("\n---Update an anomaly detection configuration...")
    sample_update_detection_config(detection_config)
    print("\n---Delete an anomaly detection configuration...")
    sample_delete_detection_config(detection_config.id)