File: sample_queries.py

package info (click to toggle)
python-azure 20230112%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 749,544 kB
  • sloc: python: 6,815,827; javascript: 287; makefile: 195; xml: 109; sh: 105
file content (189 lines) | stat: -rw-r--r-- 7,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_queries.py

DESCRIPTION:
    This sample demonstrates how to query
    - metric enriched series data
    - dimension values
    - metric dimension values
    - metrics series data
    - metric series definitions
    - metric enrichment status

USAGE:
    python sample_queries.py

    Set the environment variables with your own values before running the sample:
    1) METRICS_ADVISOR_ENDPOINT - the endpoint of your Azure Metrics Advisor service
    2) METRICS_ADVISOR_SUBSCRIPTION_KEY - Metrics Advisor service subscription key
    3) METRICS_ADVISOR_API_KEY - Metrics Advisor service API key
    4) METRICS_ADVISOR_DETECTION_CONFIGURATION_ID - the ID of an existing detection configuration
    5) METRICS_ADVISOR_METRIC_ID - the ID of an metric from an existing data feed
"""

import os

def sample_list_metric_enriched_series_data():
    # [START list_metric_enriched_series_data]
    import datetime
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")
    detection_configuration_id = os.getenv("METRICS_ADVISOR_DETECTION_CONFIGURATION_ID")
    series_identity = {"region": "Los Angeles"}

    client = MetricsAdvisorClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    results = client.list_metric_enriched_series_data(
        detection_configuration_id=detection_configuration_id,
        start_time=datetime.datetime(2020, 9, 1),
        end_time=datetime.datetime(2020, 11, 1),
        series=[series_identity]
    )
    for result in results:
        print(str(result))

    # [END list_metric_enriched_series_data]

def sample_list_anomaly_dimension_values():
    # [START list_anomaly_dimension_values]
    import datetime
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")
    detection_configuration_id = os.getenv("METRICS_ADVISOR_DETECTION_CONFIGURATION_ID")
    dimension_name = "region"

    client = MetricsAdvisorClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    results = client.list_anomaly_dimension_values(
        detection_configuration_id=detection_configuration_id,
        dimension_name=dimension_name,
        start_time=datetime.datetime(2020, 1, 1),
        end_time=datetime.datetime(2020, 10, 21),
    )
    for result in results:
        print(str(result))

    # [END list_anomaly_dimension_values]

def sample_list_metric_dimension_values():
    # [START list_metric_dimension_values]
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")
    metric_id = os.getenv("METRICS_ADVISOR_METRIC_ID")
    dimension_name = "region"

    client = MetricsAdvisorClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    results = client.list_metric_dimension_values(
        metric_id=metric_id,
        dimension_name=dimension_name,
    )
    for result in results:
        print(str(result))

    # [END list_metric_dimension_values]

def sample_list_metric_series_data():
    # [START list_metric_series_data]
    import datetime
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")
    metric_id = os.getenv("METRICS_ADVISOR_METRIC_ID")

    client = MetricsAdvisorClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    results = client.list_metric_series_data(
            metric_id=metric_id,
            start_time=datetime.datetime(2020, 1, 1),
            end_time=datetime.datetime(2020, 10, 21),
            series_keys=[
                {"region": "Los Angeles", "category": "Homemade"}
            ]
        )
    for result in results:
        print(str(result))

    # [END list_metric_series_data]

def sample_list_metric_series_definitions():
    # [START list_metric_series_definitions]
    import datetime
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")
    metric_id = os.getenv("METRICS_ADVISOR_METRIC_ID")

    client = MetricsAdvisorClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    results = client.list_metric_series_definitions(
            metric_id=metric_id,
            active_since=datetime.datetime(2020, 1, 1),
        )
    for result in results:
        print(str(result))

    # [END list_metric_series_definitions]

def sample_list_metric_enrichment_status():
    # [START list_metric_enrichment_status]
    import datetime
    from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient

    service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
    subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
    api_key = os.getenv("METRICS_ADVISOR_API_KEY")
    metric_id = os.getenv("METRICS_ADVISOR_METRIC_ID")

    client = MetricsAdvisorClient(service_endpoint,
                                  MetricsAdvisorKeyCredential(subscription_key, api_key))

    results = client.list_metric_enrichment_status(
            metric_id=metric_id,
            start_time=datetime.datetime(2020, 1, 1),
            end_time=datetime.datetime(2020, 10, 21),
        )
    for result in results:
        print(str(result))

    # [END list_metric_enrichment_status]

if __name__ == '__main__':
    print("---List metric enriched series data...")
    sample_list_metric_enriched_series_data()
    print("---List dimension values...")
    sample_list_anomaly_dimension_values()
    print("---List metric dimension values...")
    sample_list_metric_dimension_values()
    print("---List metric series data...")
    sample_list_metric_series_data()
    print("---List metric series definitions...")
    sample_list_metric_series_definitions()
    print("---List metric enrichment status...")
    sample_list_metric_enrichment_status()