File: README.md

package info (click to toggle)
python-azure 20230112%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 749,544 kB
  • sloc: python: 6,815,827; javascript: 287; makefile: 195; xml: 109; sh: 105
file content (205 lines) | stat: -rw-r--r-- 9,580 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Azure Monitor Ingestion client library for Python

The Azure Monitor Ingestion client library is used to send custom logs to [Azure Monitor][azure_monitor_overview].

This library allows you to send data from virtually any source to supported built-in tables or to custom tables that you create in Log Analytics workspace. You can even extend the schema of built-in tables with custom columns.

**Resources:**

- [Source code][source]
- [Package (PyPI)][package]
- [API reference documentation][python-ingestion-ref-docs]
- [Service documentation][azure_monitor_overview]
- [Samples][samples]
- [Change log][changelog]

## Getting started

### Prerequisites

- Python 3.7 or later
- An [Azure subscription][azure_subscription]
- An [Azure Log Analytics workspace][azure_monitor_create_using_portal]
- A [Data Collection Endpoint][data_collection_endpoint]
- A [Data Collection Rule][data_collection_rule]

### Install the package

Install the Azure Monitor Ingestion client library for Python with [pip][pip]:

```bash
pip install azure-monitor-ingestion
```

### Create the client

An authenticated client is required to upload Logs to Azure Monitor. The library includes both synchronous and asynchronous forms of the clients. To authenticate, create an instance of a token credential. Use that instance when creating a `LogsIngestionClient`. The following examples use `DefaultAzureCredential` from the [azure-identity](https://pypi.org/project/azure-identity/) package.

#### Synchronous clients

Consider the following example, which creates synchronous clients for uploading logs:

```python
import os
from azure.identity import DefaultAzureCredential
from azure.monitor.ingestion import LogsIngestionClient

endpoint = os.environ['DATA_COLLECTION_ENDPOINT']
credential = DefaultAzureCredential()
logs_client = LogsIngestionClient(endpoint, credential)
```

#### Asynchronous clients

The asynchronous forms of the client APIs are found in the `.aio`-suffixed namespace. For example:

```python
import os
from azure.identity.aio import DefaultAzureCredential
from azure.monitor.ingestion.aio import LogsIngestionClient

endpoint = os.environ['DATA_COLLECTION_ENDPOINT']
credential = DefaultAzureCredential()
logs_client = LogsIngestionClient(endpoint, credential)
```

## Key concepts

### Data Collection Endpoint

Data Collection Endpoints (DCEs) allow you to uniquely configure ingestion settings for Azure Monitor. [This article][data_collection_endpoint] provides an overview of data collection endpoints including their contents and structure and how you can create and work with them.

### Data Collection Rule

Data collection rules (DCR) define data collected by Azure Monitor and specify how and where that data should be sent or stored. The REST API call must specify a DCR to use. A single DCE can support multiple DCRs, so you can specify a different DCR for different sources and target tables.

The DCR must understand the structure of the input data and the structure of the target table. If the two don't match, it can use a transformation to convert the source data to match the target table. You may also use the transform to filter source data and perform any other calculations or conversions.

For more details, refer to [Data collection rules in Azure Monitor](https://learn.microsoft.com/azure/azure-monitor/essentials/data-collection-rule-overview).

### Log Analytics workspace tables

Custom logs can send data to any custom table that you create and to certain built-in tables in your Log Analytics workspace. The target table must exist before you can send data to it. The following built-in tables are currently supported:

- [CommonSecurityLog](https://learn.microsoft.com/azure/azure-monitor/reference/tables/commonsecuritylog)
- [SecurityEvents](https://learn.microsoft.com/azure/azure-monitor/reference/tables/securityevent)
- [Syslog](https://learn.microsoft.com/azure/azure-monitor/reference/tables/syslog)
- [WindowsEvents](https://learn.microsoft.com/azure/azure-monitor/reference/tables/windowsevent)

### Logs retrieval

The logs that were uploaded using this library can be queried using the [Azure Monitor Query][azure_monitor_query] client library.

## Examples

- [Upload custom logs](#upload-custom-logs)
- [Upload with custom error handling](#upload-with-custom-error-handling)

### Upload custom logs

This example shows uploading logs to Azure Monitor.

```python
import os

from azure.core.exceptions import HttpResponseError
from azure.identity import DefaultAzureCredential
from azure.monitor.ingestion import LogsIngestionClient

endpoint = os.environ['DATA_COLLECTION_ENDPOINT']
credential = DefaultAzureCredential()

client = LogsIngestionClient(endpoint=endpoint, credential=credential, logging_enable=True)

rule_id = os.environ['LOGS_DCR_RULE_ID']
body = [
      {
        "Time": "2021-12-08T23:51:14.1104269Z",
        "Computer": "Computer1",
        "AdditionalContext": "context-2"
      },
      {
        "Time": "2021-12-08T23:51:14.1104269Z",
        "Computer": "Computer2",
        "AdditionalContext": "context"
      }
    ]

try:
    client.upload(rule_id=rule_id, stream_name=os.environ['LOGS_DCR_STREAM_NAME'], logs=body)
except HttpResponseError as e:
    print(f"Upload failed: {e}")
```

### Upload with custom error handling

To upload logs with custom error handling, you can pass a callback function to the `on_error` parameter of the `upload` method. The callback function will be called for each error that occurs during the upload and should expect two arguments which correspond to the error encountered and the list of logs that failed to upload.

```python
failed_logs = []
def on_error(error, logs):
    print("Log chunk failed to upload with error: ", error)
    # Collect all logs that failed to upload.
    failed_logs.extend(logs)

client.upload(rule_id=rule_id, stream_name=os.environ['LOGS_DCR_STREAM_NAME'], logs=body, on_error=on_error)
```

## Troubleshooting

Enable the `azure.monitor.ingestion` logger to collect traces from the library.

### General

Monitor Ingestion client library will raise exceptions defined in [Azure Core][azure_core_exceptions].

### Logging

This library uses the standard [logging][python_logging] library for logging. Basic information about HTTP sessions, such as URLs and headers, is logged at the `INFO` level.

### Optional configuration

Optional keyword arguments can be passed in at the client and per-operation level. The `azure-core` [reference documentation][azure_core_ref_docs] describes available configurations for retries, logging, transport protocols, and more.

## Next steps

To learn more about Azure Monitor, see the [Azure Monitor service documentation][azure_monitor_overview].

### Samples

The following code samples show common scenarios with the Azure Monitor Ingestion client library.

#### Logs Ingestion samples

- [Upload a list of logs](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-ingestion/samples/sample_send_small_logs.py) ([async sample](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-ingestion/samples/async_samples/sample_send_small_logs_async.py))

## Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit [cla.microsoft.com][cla].

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repositories using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information see the [Code of Conduct FAQ][coc_faq] or contact [opencode@microsoft.com][coc_contact] with any additional questions or comments.

<!-- LINKS -->

[azure_core_exceptions]: https://aka.ms/azsdk/python/core/docs#module-azure.core.exceptions
[azure_core_ref_docs]: https://aka.ms/azsdk/python/core/docs
[azure_monitor_create_using_portal]: https://learn.microsoft.com/azure/azure-monitor/logs/quick-create-workspace
[azure_monitor_overview]: https://learn.microsoft.com/azure/azure-monitor/
[azure_monitor_query]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-query#readme
[azure_subscription]: https://azure.microsoft.com/free/python/
[changelog]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-ingestion/CHANGELOG.md
[data_collection_endpoint]: https://learn.microsoft.com/azure/azure-monitor/essentials/data-collection-endpoint-overview
[data_collection_rule]: https://learn.microsoft.com/azure/azure-monitor/essentials/data-collection-rule-overview
[package]: https://aka.ms/azsdk-python-monitor-ingestion-pypi
[pip]: https://pypi.org/project/pip/
[python_logging]: https://docs.python.org/3/library/logging.html
[python-ingestion-ref-docs]: https://aka.ms/azsdk/python/monitor-ingestion/docs
[samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-ingestion/samples
[source]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-ingestion/

[cla]: https://cla.microsoft.com
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
[coc_contact]: mailto:opencode@microsoft.com