1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
# Azure Monitor Query client library for Python
The Azure Monitor Query client library is used to execute read-only queries against [Azure Monitor][azure_monitor_overview]'s two data platforms:
- [Logs](https://learn.microsoft.com/azure/azure-monitor/logs/data-platform-logs) - Collects and organizes log and performance data from monitored resources. Data from different sources such as platform logs from Azure services, log and performance data from virtual machines agents, and usage and performance data from apps can be consolidated into a single [Azure Log Analytics workspace](https://learn.microsoft.com/azure/azure-monitor/logs/data-platform-logs#log-analytics-and-workspaces). The various data types can be analyzed together using the [Kusto Query Language][kusto_query_language].
- [Metrics](https://learn.microsoft.com/azure/azure-monitor/essentials/data-platform-metrics) - Collects numeric data from monitored resources into a time series database. Metrics are numerical values that are collected at regular intervals and describe some aspect of a system at a particular time. Metrics are lightweight and capable of supporting near real-time scenarios, making them useful for alerting and fast detection of issues.
**Resources:**
- [Source code][source]
- [Package (PyPI)][package]
- [API reference documentation][python-query-ref-docs]
- [Service documentation][azure_monitor_overview]
- [Samples][samples]
- [Change log][changelog]
## Getting started
### Prerequisites
- Python 3.7 or later
- An [Azure subscription][azure_subscription]
- A [TokenCredential](https://learn.microsoft.com/python/api/azure-core/azure.core.credentials.tokencredential?view=azure-python) implementation, such as an [Azure Identity library credential type](https://learn.microsoft.com/python/api/overview/azure/identity-readme?view=azure-python#credential-classes).
- To query Logs, you need an [Azure Log Analytics workspace][azure_monitor_create_using_portal].
- To query Metrics, you need an Azure resource of any kind (Storage Account, Key Vault, Cosmos DB, etc.).
### Install the package
Install the Azure Monitor Query client library for Python with [pip][pip]:
```bash
pip install azure-monitor-query
```
### Create the client
An authenticated client is required to query Logs or Metrics. The library includes both synchronous and asynchronous forms of the clients. To authenticate, create an instance of a token credential. Use that instance when creating a `LogsQueryClient` or `MetricsQueryClient`. The following examples use `DefaultAzureCredential` from the [azure-identity](https://pypi.org/project/azure-identity/) package.
#### Synchronous clients
Consider the following example, which creates synchronous clients for both Logs and Metrics querying:
```python
from azure.identity import DefaultAzureCredential
from azure.monitor.query import LogsQueryClient, MetricsQueryClient
credential = DefaultAzureCredential()
logs_client = LogsQueryClient(credential)
metrics_client = MetricsQueryClient(credential)
```
#### Asynchronous clients
The asynchronous forms of the query client APIs are found in the `.aio`-suffixed namespace. For example:
```python
from azure.identity.aio import DefaultAzureCredential
from azure.monitor.query.aio import LogsQueryClient, MetricsQueryClient
credential = DefaultAzureCredential()
async_logs_client = LogsQueryClient(credential)
async_metrics_client = MetricsQueryClient(credential)
```
### Execute the query
For examples of Logs and Metrics queries, see the [Examples](#examples) section.
## Key concepts
### Logs query rate limits and throttling
The Log Analytics service applies throttling when the request rate is too high. Limits, such as the maximum number of rows returned, are also applied on the Kusto queries. For more information, see [Query API](https://learn.microsoft.com/azure/azure-monitor/service-limits#la-query-api).
If you're executing a batch logs query, a throttled request will return a `LogsQueryError` object. That object's `code` value will be `ThrottledError`.
### Metrics data structure
Each set of metric values is a time series with the following characteristics:
- The time the value was collected
- The resource associated with the value
- A namespace that acts like a category for the metric
- A metric name
- The value itself
- Some metrics may have multiple dimensions as described in multi-dimensional metrics. Custom metrics can have up to 10 dimensions.
## Examples
- [Logs query](#logs-query)
- [Specify timespan](#specify-timespan)
- [Handle logs query response](#handle-logs-query-response)
- [Batch logs query](#batch-logs-query)
- [Advanced logs query scenarios](#advanced-logs-query-scenarios)
- [Set logs query timeout](#set-logs-query-timeout)
- [Query multiple workspaces](#query-multiple-workspaces)
- [Include statistics](#include-statistics)
- [Include visualization](#include-visualization)
- [Metrics query](#metrics-query)
- [Handle metrics query response](#handle-metrics-query-response)
- [Example of handling response](#example-of-handling-response)
### Logs query
This example shows getting a logs query. To handle the response and view it in a tabular form, the [pandas](https://pypi.org/project/pandas/) library is used. See the [samples][samples] if you choose not to use pandas.
#### Specify timespan
The `timespan` parameter specifies the time duration for which to query the data. This value can be one of the following:
- a `timedelta`
- a `timedelta` and a start datetime
- a start datetime/end datetime
For example:
```python
import os
import pandas as pd
from datetime import datetime, timezone
from azure.monitor.query import LogsQueryClient, LogsQueryStatus
from azure.identity import DefaultAzureCredential
from azure.core.exceptions import HttpResponseError
credential = DefaultAzureCredential()
client = LogsQueryClient(credential)
query = """AppRequests | take 5"""
start_time=datetime(2021, 7, 2, tzinfo=timezone.utc)
end_time=datetime(2021, 7, 4, tzinfo=timezone.utc)
try:
response = client.query_workspace(
workspace_id=os.environ['LOG_WORKSPACE_ID'],
query=query,
timespan=(start_time, end_time)
)
if response.status == LogsQueryStatus.PARTIAL:
error = response.partial_error
data = response.partial_data
print(error)
elif response.status == LogsQueryStatus.SUCCESS:
data = response.tables
for table in data:
df = pd.DataFrame(data=table.rows, columns=table.columns)
print(df)
except HttpResponseError as err:
print("something fatal happened")
print (err)
```
#### Handle logs query response
The `query_workspace` API returns either a `LogsQueryResult` or a `LogsQueryPartialResult` object. The `batch_query` API returns a list that may contain `LogsQueryResult`, `LogsQueryPartialResult`, and `LogsQueryError` objects. Here's a hierarchy of the response:
```
LogsQueryResult
|---statistics
|---visualization
|---tables (list of `LogsTable` objects)
|---name
|---rows
|---columns
|---column_types
LogsQueryPartialResult
|---statistics
|---visualization
|---partial_error (a `LogsQueryError` object)
|---code
|---message
|---details
|---status
|---partial_data (list of `LogsTable` objects)
|---name
|---rows
|---columns
|---column_types
```
The `LogsQueryResult` directly iterates over the table as a convenience. For example, to handle a logs query response with tables and display it using pandas:
```python
response = client.query(...)
for table in response:
df = pd.DataFrame(table.rows, columns=[col.name for col in table.columns])
```
A full sample can be found [here](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_logs_single_query.py).
In a similar fashion, to handle a batch logs query response:
```python
for result in response:
if result.status == LogsQueryStatus.SUCCESS:
for table in result:
df = pd.DataFrame(table.rows, columns=table.columns)
print(df)
```
A full sample can be found [here](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_batch_query.py).
### Batch logs query
The following example demonstrates sending multiple queries at the same time using the batch query API. The queries can either be represented as a list of `LogsBatchQuery` objects or a dictionary. This example uses the former approach.
```python
import os
from datetime import timedelta, datetime, timezone
import pandas as pd
from azure.monitor.query import LogsQueryClient, LogsBatchQuery, LogsQueryStatus
from azure.identity import DefaultAzureCredential
credential = DefaultAzureCredential()
client = LogsQueryClient(credential)
requests = [
LogsBatchQuery(
query="AzureActivity | summarize count()",
timespan=timedelta(hours=1),
workspace_id= os.environ['LOG_WORKSPACE_ID']
),
LogsBatchQuery(
query= """bad query""",
timespan=timedelta(days=1),
workspace_id= os.environ['LOG_WORKSPACE_ID']
),
LogsBatchQuery(
query= """let Weight = 92233720368547758;
range x from 1 to 3 step 1
| summarize percentilesw(x, Weight * 100, 50)""",
workspace_id= os.environ['LOG_WORKSPACE_ID'],
timespan=(datetime(2021, 6, 2, tzinfo=timezone.utc), datetime(2021, 6, 5, tzinfo=timezone.utc)), # (start, end)
include_statistics=True
),
]
results = client.query_batch(requests)
for res in results:
if res.status == LogsQueryStatus.FAILURE:
# this will be a LogsQueryError
print(res.message)
elif res.status == LogsQueryStatus.PARTIAL:
## this will be a LogsQueryPartialResult
print(res.partial_error)
for table in res.partial_data:
df = pd.DataFrame(table.rows, columns=table.columns)
print(df)
elif res.status == LogsQueryStatus.SUCCESS:
## this will be a LogsQueryResult
table = res.tables[0]
df = pd.DataFrame(table.rows, columns=table.columns)
print(df)
```
### Advanced logs query scenarios
#### Set logs query timeout
The following example shows setting a server timeout in seconds. A gateway timeout is raised if the query takes more time than the mentioned timeout. The default is 180 seconds and can be set up to 10 minutes (600 seconds).
```python
import os
from azure.monitor.query import LogsQueryClient
from azure.identity import DefaultAzureCredential
credential = DefaultAzureCredential()
client = LogsQueryClient(credential)
response = client.query_workspace(
os.environ['LOG_WORKSPACE_ID'],
"range x from 1 to 10000000000 step 1 | count",
timespan=timedelta(days=1),
server_timeout=600 # sets the timeout to 10 minutes
)
```
#### Query multiple workspaces
The same logs query can be executed across multiple Log Analytics workspaces. In addition to the Kusto query, the following parameters are required:
- `workspace_id` - The first (primary) workspace ID.
- `additional_workspaces` - A list of workspaces, excluding the workspace provided in the `workspace_id` parameter. The parameter's list items may consist of the following identifier formats:
- Qualified workspace names
- Workspace IDs
- Azure resource IDs
For example, the following query executes in three workspaces:
```python
client.query_workspace(
<workspace_id>,
query,
timespan=timedelta(days=1),
additional_workspaces=['<workspace 2>', '<workspace 3>']
)
```
A full sample can be found [here](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_log_query_multiple_workspaces.py).
#### Include statistics
To get logs query execution statistics, such as CPU and memory consumption:
1. Set the `include_statistics` parameter to `True`.
2. Access the `statistics` field inside the `LogsQueryResult` object.
The following example prints the query execution time:
```python
query = "AzureActivity | top 10 by TimeGenerated"
result = client.query_workspace(
<workspace_id>,
query,
timespan=timedelta(days=1),
include_statistics=True
)
execution_time = result.statistics.get("query", {}).get("executionTime")
print(f"Query execution time: {execution_time}")
```
The `statistics` field is a `dict` that corresponds to the raw JSON response, and its structure can vary by query. The statistics are found within the `query` property. For example:
```python
{
"query": {
"executionTime": 0.0156478,
"resourceUsage": {...},
"inputDatasetStatistics": {...},
"datasetStatistics": [{...}]
}
}
```
#### Include visualization
To get visualization data for logs queries using the [render operator](https://docs.microsoft.com/azure/data-explorer/kusto/query/renderoperator?pivots=azuremonitor):
1. Set the `include_visualization` property to `True`.
1. Access the `visualization` field inside the `LogsQueryResult` object.
For example:
```python
query = (
"StormEvents"
"| summarize event_count = count() by State"
"| where event_count > 10"
"| project State, event_count"
"| render columnchart"
)
result = client.query_workspace(
<workspace_id>,
query,
timespan=timedelta(days=1),
include_visualization=True
)
print(f"Visualization result: {result.visualization}")
```
The `visualization` field is a `dict` that corresponds to the raw JSON response, and its structure can vary by query. For example:
```python
{
"visualization": "columnchart",
"title": "the chart title",
"accumulate": False,
"isQuerySorted": False,
"kind": None,
"legend": None,
"series": None,
"yMin": "NaN",
"yMax": "NaN",
"xAxis": None,
"xColumn": None,
"xTitle": "x axis title",
"yAxis": None,
"yColumns": None,
"ySplit": None,
"yTitle": None,
"anomalyColumns": None
}
```
### Metrics query
The following example gets metrics for an Event Grid subscription. The resource URI is that of an Event Grid topic.
The resource URI must be that of the resource for which metrics are being queried. It's normally of the format `/subscriptions/<id>/resourceGroups/<rg-name>/providers/<source>/topics/<resource-name>`.
To find the resource URI:
1. Navigate to your resource's page in the Azure portal.
2. From the **Overview** blade, select the **JSON View** link.
3. In the resulting JSON, copy the value of the `id` property.
**NOTE**: The metrics are returned in the order of the metric_names sent.
```python
import os
from datetime import timedelta, datetime
from azure.monitor.query import MetricsQueryClient
from azure.identity import DefaultAzureCredential
credential = DefaultAzureCredential()
client = MetricsQueryClient(credential)
start_time = datetime(2021, 5, 25)
duration = timedelta(days=1)
metrics_uri = os.environ['METRICS_RESOURCE_URI']
response = client.query_resource(
metrics_uri,
metric_names=["PublishSuccessCount"],
timespan=(start_time, duration)
)
for metric in response.metrics:
print(metric.name)
for time_series_element in metric.timeseries:
for metric_value in time_series_element.data:
print(metric_value.time_stamp)
```
#### Handle metrics query response
The metrics query API returns a `MetricsQueryResult` object. The `MetricsQueryResult` object contains properties such as a list of `Metric`-typed objects, `granularity`, `namespace`, and `timespan`. The `Metric` objects list can be accessed using the `metrics` param. Each `Metric` object in this list contains a list of `TimeSeriesElement` objects. Each `TimeSeriesElement` object contains `data` and `metadata_values` properties. In visual form, the object hierarchy of the response resembles the following structure:
```
MetricsQueryResult
|---granularity
|---timespan
|---cost
|---namespace
|---resource_region
|---metrics (list of `Metric` objects)
|---id
|---type
|---name
|---unit
|---timeseries (list of `TimeSeriesElement` objects)
|---metadata_values
|---data (list of data points represented by `MetricValue` objects)
```
#### Example of handling response
```python
import os
from azure.monitor.query import MetricsQueryClient, MetricAggregationType
from azure.identity import DefaultAzureCredential
credential = DefaultAzureCredential()
client = MetricsQueryClient(credential)
metrics_uri = os.environ['METRICS_RESOURCE_URI']
response = client.query_resource(
metrics_uri,
metric_names=["MatchedEventCount"],
aggregations=[MetricAggregationType.COUNT]
)
for metric in response.metrics:
print(metric.name)
for time_series_element in metric.timeseries:
for metric_value in time_series_element.data:
if metric_value.count != 0:
print(
"There are {} matched events at {}".format(
metric_value.count,
metric_value.time_stamp
)
)
```
## Troubleshooting
Enable the `azure.monitor.query` logger to collect traces from the library.
### General
Monitor Query client library will raise exceptions defined in [Azure Core][azure_core_exceptions].
### Logging
This library uses the standard [logging][python_logging] library for logging. Basic information about HTTP sessions, such as URLs and headers, is logged at the `INFO` level.
### Optional configuration
Optional keyword arguments can be passed in at the client and per-operation level. The `azure-core` [reference documentation][azure_core_ref_docs] describes available configurations for retries, logging, transport protocols, and more.
## Next steps
To learn more about Azure Monitor, see the [Azure Monitor service documentation][azure_monitor_overview].
### Samples
The following code samples show common scenarios with the Azure Monitor Query client library.
#### Logs query samples
- [Send a single query with LogsQueryClient and handle the response as a table](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_logs_single_query.py) ([async sample](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/async_samples/sample_log_query_async.py))
- [Send a single query with LogsQueryClient and handle the response in key-value form](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_logs_query_key_value_form.py)
- [Send a single query with LogsQueryClient without pandas](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_single_log_query_without_pandas.py)
- [Send a single query with LogsQueryClient across multiple workspaces](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_log_query_multiple_workspaces.py)
- [Send multiple queries with LogsQueryClient](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_batch_query.py)
- [Send a single query with LogsQueryClient using server timeout](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_server_timeout.py)
#### Metrics query samples
- [Send a query using MetricsQueryClient](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_metrics_query.py) ([async sample](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/async_samples/sample_metrics_query_async.py))
- [Get a list of metric namespaces](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_metric_namespaces.py) ([async sample](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/async_samples/sample_metric_namespaces_async.py))
- [Get a list of metric definitions](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/sample_metric_definitions.py) ([async sample](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/samples/async_samples/sample_metric_definitions_async.py))
## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit [cla.microsoft.com][cla].
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repositories using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information see the [Code of Conduct FAQ][coc_faq] or contact [opencode@microsoft.com][coc_contact] with any additional questions or comments.
<!-- LINKS -->
[azure_core_exceptions]: https://aka.ms/azsdk/python/core/docs#module-azure.core.exceptions
[azure_core_ref_docs]: https://aka.ms/azsdk/python/core/docs
[azure_monitor_create_using_portal]: https://learn.microsoft.com/azure/azure-monitor/logs/quick-create-workspace
[azure_monitor_overview]: https://learn.microsoft.com/azure/azure-monitor/
[azure_subscription]: https://azure.microsoft.com/free/python/
[changelog]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-query/CHANGELOG.md
[kusto_query_language]: https://learn.microsoft.com/azure/data-explorer/kusto/query/
[package]: https://aka.ms/azsdk-python-monitor-query-pypi
[pip]: https://pypi.org/project/pip/
[python_logging]: https://docs.python.org/3/library/logging.html
[python-query-ref-docs]: https://aka.ms/azsdk/python/monitor-query/docs
[samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/monitor/azure-monitor-query/samples
[source]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/monitor/azure-monitor-query/
[cla]: https://cla.microsoft.com
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
[coc_contact]: mailto:opencode@microsoft.com
|