File: sample_agents_agent_team.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (78 lines) | stat: -rw-r--r-- 3,041 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
    This sample demonstrates how to use multiple agents using AgentTeam with traces.

    The team consists of
        • one leader agent - automatically created by AgentTeam from the
          configuration in `utils/agent_team_config.yaml`
        • two worker agents - `Coder` and `Reviewer`, defined in the code below

    IMPORTANT - leader-agent model configuration
        `utils/agent_team_config.yaml` contains the key  TEAM_LEADER_MODEL.
        Its value must be the name of a **deployed** model in your Azure AI
        project (e.g. "gpt-4o-mini").
        If this model deployment is not available, AgentTeam cannot instantiate
        the leader agent and the sample will fail.

USAGE:
    python sample_agents_agent_team.py

    Before running the sample:

    1. pip install azure-ai-agents azure-identity
    2. Ensure `utils/agent_team_config.yaml` is present and TEAM_LEADER_MODEL points
       to a valid model deployment.
    3. Set these environment variables with your own values:
         PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
                            page of your Azure AI Foundry portal.
         MODEL_DEPLOYMENT_NAME - The model deployment name used for the worker agents.
"""

import os
from azure.ai.agents import AgentsClient
from azure.identity import DefaultAzureCredential
from utils.agent_team import AgentTeam, _create_task
from utils.agent_trace_configurator import AgentTraceConfigurator

agents_client = AgentsClient(
    endpoint=os.environ["PROJECT_ENDPOINT"],
    credential=DefaultAzureCredential(),
)

agents_client.enable_auto_function_calls({_create_task})

model_deployment_name = os.getenv("MODEL_DEPLOYMENT_NAME")

if model_deployment_name is not None:
    AgentTraceConfigurator(agents_client=agents_client).setup_tracing()
    with agents_client:
        agent_team = AgentTeam("test_team", agents_client=agents_client)
        agent_team.add_agent(
            model=model_deployment_name,
            name="Coder",
            instructions="You are software engineer who writes great code. Your name is Coder.",
        )
        agent_team.add_agent(
            model=model_deployment_name,
            name="Reviewer",
            instructions="You are software engineer who reviews code. Your name is Reviewer.",
        )
        agent_team.assemble_team()

        print("A team of agents specialized in software engineering is available for requests.")
        while True:
            user_input = input("Input (type 'quit' or 'exit' to exit): ")
            if user_input.lower() == "quit":
                break
            elif user_input.lower() == "exit":
                break
            agent_team.process_request(request=user_input)

        agent_team.dismantle_team()
else:
    print("Error: Please define the environment variable MODEL_DEPLOYMENT_NAME.")