1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
DESCRIPTION:
This sample demonstrates how to use agent operations with toolset from
the Azure Agents service using a synchronous client.
USAGE:
python sample_agents_run_with_toolset.py
Before running the sample:
pip install azure-ai-agents azure-identity
Set these environment variables with your own values:
1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
page of your Azure AI Foundry portal.
2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
the "Models + endpoints" tab in your Azure AI Foundry project.
"""
import os, sys
from azure.ai.agents import AgentsClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import FunctionTool, ToolSet, CodeInterpreterTool
current_path = os.path.dirname(__file__)
root_path = os.path.abspath(os.path.join(current_path, os.pardir, os.pardir))
if root_path not in sys.path:
sys.path.insert(0, root_path)
from samples.utils.user_functions import user_functions
agents_client = AgentsClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
# Create agent with toolset and process agent run
with agents_client:
# Initialize agent toolset with user functions and code interpreter
# [START create_agent_toolset]
functions = FunctionTool(user_functions)
code_interpreter = CodeInterpreterTool()
toolset = ToolSet()
toolset.add(functions)
toolset.add(code_interpreter)
# To enable tool calls executed automatically
agents_client.enable_auto_function_calls(toolset)
agent = agents_client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-agent",
instructions="You are a helpful agent",
toolset=toolset,
)
# [END create_agent_toolset]
print(f"Created agent, ID: {agent.id}")
# Create thread for communication
thread = agents_client.threads.create()
print(f"Created thread, ID: {thread.id}")
# Create message to thread
message = agents_client.messages.create(
thread_id=thread.id,
role="user",
content="Hello, send an email with the datetime and weather information in New York?",
)
print(f"Created message, ID: {message.id}")
# Create and process agent run in thread with tools
# [START create_and_process_run]
run = agents_client.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
# [END create_and_process_run]
print(f"Run finished with status: {run.status}")
if run.status == "failed":
print(f"Run failed: {run.last_error}")
# Delete the agent when done
agents_client.delete_agent(agent.id)
print("Deleted agent")
# Fetch and log all messages
messages = agents_client.messages.list(thread_id=thread.id)
for msg in messages:
if msg.text_messages:
last_text = msg.text_messages[-1]
print(f"{msg.role}: {last_text.text.value}")
|