File: sample_embeddings.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (57 lines) | stat: -rw-r--r-- 2,204 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
DESCRIPTION:
    This sample demonstrates how to get text embeddings for a list of sentences
    using a synchronous client. Here we use the service default of returning
    embeddings as a list of floating point values.

    This sample assumes the AI model is hosted on a Serverless API or
    Managed Compute endpoint. For GitHub Models or Azure OpenAI endpoints,
    the client constructor needs to be modified. See package documentation:
    https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-inference/README.md#key-concepts

USAGE:
    python sample_embeddings.py

    Set these two environment variables before running the sample:
    1) AZURE_AI_EMBEDDINGS_ENDPOINT - Your endpoint URL, in the form 
        https://<your-deployment-name>.<your-azure-region>.models.ai.azure.com
        where `your-deployment-name` is your unique AI Model deployment name, and
        `your-azure-region` is the Azure region where your model is deployed.
    2) AZURE_AI_EMBEDDINGS_KEY - Your model key. Keep it secret.
"""


def sample_embeddings():
    import os

    try:
        endpoint = os.environ["AZURE_AI_EMBEDDINGS_ENDPOINT"]
        key = os.environ["AZURE_AI_EMBEDDINGS_KEY"]
    except KeyError:
        print("Missing environment variable 'AZURE_AI_EMBEDDINGS_ENDPOINT' or 'AZURE_AI_EMBEDDINGS_KEY'")
        print("Set them before running this sample.")
        exit()

    # [START embeddings]
    from azure.ai.inference import EmbeddingsClient
    from azure.core.credentials import AzureKeyCredential

    client = EmbeddingsClient(endpoint=endpoint, credential=AzureKeyCredential(key))

    response = client.embed(input=["first phrase", "second phrase", "third phrase"])

    for item in response.data:
        length = len(item.embedding)
        print(
            f"data[{item.index}]: length={length}, [{item.embedding[0]}, {item.embedding[1]}, "
            f"..., {item.embedding[length-2]}, {item.embedding[length-1]}]"
        )
    # [END embeddings]


if __name__ == "__main__":
    sample_embeddings()