1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
DESCRIPTION:
This sample demonstrates how to get information about the AI model, using the
synchronous chat completions client. Similarly can be done with the other
clients.
The get_model_info() method on the client only works with Serverless API or
Managed Compute endpoints.
USAGE:
python sample_get_model_info.py
Set these two environment variables before running the sample:
1) AZURE_AI_CHAT_ENDPOINT - Your endpoint URL, in the form
https://<your-deployment-name>.<your-azure-region>.models.ai.azure.com
where `your-deployment-name` is your unique AI Model deployment name, and
`your-azure-region` is the Azure region where your model is deployed.
2) AZURE_AI_CHAT_KEY - Your model key). Keep it secret.
"""
def sample_get_model_info():
import os
try:
endpoint = os.environ["AZURE_AI_CHAT_ENDPOINT"]
key = os.environ["AZURE_AI_CHAT_KEY"]
except KeyError:
print("Missing environment variable 'AZURE_AI_CHAT_ENDPOINT' or 'AZURE_AI_CHAT_KEY'")
print("Set them before running this sample.")
exit()
from azure.ai.inference import ChatCompletionsClient
from azure.core.credentials import AzureKeyCredential
client = ChatCompletionsClient(endpoint=endpoint, credential=AzureKeyCredential(key))
# [START get_model_info]
model_info = client.get_model_info()
print(f"Model name: {model_info.model_name}")
print(f"Model provider name: {model_info.model_provider_name}")
print(f"Model type: {model_info.model_type}")
# [END get_model_info]
if __name__ == "__main__":
sample_get_model_info()
|