File: model_inference_test_base.py

package info (click to toggle)
python-azure 20250603%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 851,724 kB
  • sloc: python: 7,362,925; ansic: 804; javascript: 287; makefile: 195; sh: 145; xml: 109
file content (929 lines) | stat: -rw-r--r-- 53,180 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
import azure.ai.inference as sdk
import azure.ai.inference.aio as async_sdk
import functools
import io
import json
import logging
import re
import sys

from os import path
from pathlib import Path
from typing import List, Optional, Union, Dict, Any
from devtools_testutils import AzureRecordedTestCase, EnvironmentVariableLoader
from azure.core.credentials import AzureKeyCredential
from azure.core.rest import HttpResponse, AsyncHttpResponse

# Set to True to enable SDK logging
LOGGING_ENABLED = True

if LOGGING_ENABLED:
    # Create a logger for the 'azure' SDK
    # See https://docs.python.org/3/library/logging.html
    logger = logging.getLogger("azure")
    logger.setLevel(logging.DEBUG)  # INFO or DEBUG

    # Configure a console output
    handler = logging.StreamHandler(stream=sys.stdout)
    logger.addHandler(handler)

#
# Define these environment variables. They should point to a Mistral Large model
# hosted on MaaS, or any other MaaS model that suppots chat completions with tools.
# AZURE_AI_CHAT_ENDPOINT=https://<endpoint-name>.<azure-region>.models.ai.azure.com
# AZURE_AI_CHAT_KEY=<api-key>
#
ServicePreparerChatCompletions = functools.partial(
    EnvironmentVariableLoader,
    "azure_ai_chat",
    azure_ai_chat_endpoint="https://your-deployment-name.eastus2.models.ai.azure.com",
    azure_ai_chat_key="00000000000000000000000000000000",
    azure_ai_chat_model="mistral-large-2411",
)

#
# Define these environment variables. They should point to any GPT model that
# accepts image input in chat completions (e.g. GPT-4o model).
# hosted on Azure OpenAI (AOAI) endpoint.
# TODO: When we have a MaaS model that supports chat completions with image input,
# use that instead.
# AZURE_OPENAI_CHAT_ENDPOINT=https://<endpont-name>.openai.azure.com/openai/deployments/gpt-4o
# AZURE_OPENAI_CHAT_KEY=<api-key>
#
ServicePreparerAOAIChatCompletions = functools.partial(
    EnvironmentVariableLoader,
    "azure_openai_chat",
    azure_openai_chat_endpoint="https://your-deployment-name.openai.azure.com/openai/deployments/gpt-4o-deployment",
    azure_openai_chat_key="00000000000000000000000000000000",
    azure_openai_chat_api_version="yyyy-mm-dd-preview",
    azure_openai_chat_audio_endpoint="https://your-deployment-name.openai.azure.com/openai/deployments/gpt-4o-audio-preview",
    azure_openai_chat_audio_key="00000000000000000000000000000000",
    azure_openai_chat_audio_api_version="yyyy-mm-dd-preview",
)

#
# Define these environment variables for text embeddings. They should point to a Cohere model
# hosted on MaaS, or any other MaaS model that text embeddings.
# AZURE_AI_EMBEDDINGS_ENDPOINT=https://<endpoint-name>.<azure-region>.models.ai.azure.com
# AZURE_AI_EMBEDDINGS_KEY=<pi-key>
#
ServicePreparerEmbeddings = functools.partial(
    EnvironmentVariableLoader,
    "azure_ai_embeddings",
    azure_ai_embeddings_endpoint="https://your-deployment-name.eastus2.models.ai.azure.com",
    azure_ai_embeddings_key="00000000000000000000000000000000",
)

#
# Define these environment variables for image embeddings. They should point to a Cohere model
# hosted on MaaS, or any other MaaS model that text embeddings.
# AZURE_AI_IMAGE_EMBEDDINGS_ENDPOINT=https://<endpoint-name>.<azure-region>.models.ai.azure.com
# AZURE_AI_IMAGE_EMBEDDINGS_KEY=<api-key>
#
ServicePreparerImageEmbeddings = functools.partial(
    EnvironmentVariableLoader,
    "azure_ai_image_embeddings",
    azure_ai_image_embeddings_endpoint="https://your-deployment-name.eastus2.models.ai.azure.com",
    azure_ai_image_embeddings_key="00000000000000000000000000000000",
)


# The test class name needs to start with "Test" to get collected by pytest
class ModelClientTestBase(AzureRecordedTestCase):

    # Set to True to print out all results to the console
    PRINT_RESULT = True

    # Regular expression describing the pattern of a result ID returned from MaaS/MaaP endpoint. Format allowed are:
    # "183b56eb-8512-484d-be50-5d8df82301a2", "26ef25aa45424781865a2d38a4484274" and "Sanitized" (when running tests
    # from recordings)
    REGEX_RESULT_ID = re.compile(
        r"^[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}$|^[0-9a-fA-F]{32}$|^Sanitized$"
    )

    # Regular expression describing the pattern of a result ID returned from AOAI endpoint.
    # For example: "chatcmpl-9jscXwejvOMnGrxRfACmNrCCdiwWb" or "Sanitized" (when runing tests from recordings) # cspell:disable-line
    REGEX_AOAI_RESULT_ID = re.compile(r"^chatcmpl-[0-9a-zA-Z]{29}$|^Sanitized$")  # cspell:disable-line

    # Regular expression describing the pattern of a base64 string
    REGEX_BASE64_STRING = re.compile(r"^[A-Za-z0-9+/]+={0,3}$")

    # A couple of tool definitions to use in the tests
    TOOL1 = sdk.models.ChatCompletionsToolDefinition(
        function=sdk.models.FunctionDefinition(
            name="my-first-function-name",
            description="My first function description",
            parameters={
                "type": "object",
                "properties": {
                    "first_argument": {
                        "type": "string",
                        "description": "First argument description",
                    },
                    "second_argument": {
                        "type": "string",
                        "description": "Second argument description",
                    },
                },
                "required": ["first_argument", "second_argument"],
            },
        )
    )

    TOOL2 = sdk.models.ChatCompletionsToolDefinition(
        function=sdk.models.FunctionDefinition(
            name="my-second-function-name",
            description="My second function description",
            parameters={
                "type": "object",
                "properties": {
                    "first_argument": {
                        "type": "int",
                        "description": "First argument description",
                    },
                },
                "required": ["first_argument"],
            },
        )
    )

    # Expected JSON request payload in regression tests. These are common to
    # sync and async tests, therefore they are defined here.
    CHAT_COMPLETIONS_JSON_REQUEST_PAYLOAD = '{"messages": [{"role": "system", "content": "system prompt"}, {"role": "user", "content": "user prompt 1"}, {"role": "assistant", "tool_calls": [{"function": {"name": "my-first-function-name", "arguments": {"first_argument": "value1", "second_argument": "value2"}}, "id": "some-id", "type": "function"}, {"function": {"name": "my-second-function-name", "arguments": {"first_argument": "value1"}}, "id": "some-other-id", "type": "function"}]}, {"role": "tool", "tool_call_id": "some id", "content": "function response"}, {"role": "assistant", "content": "assistant prompt"}, {"role": "user", "content": [{"type": "text", "text": "user prompt 2"}, {"type": "image_url", "image_url": {"url": "https://does.not.exit/image.png", "detail": "high"}}]}], "stream": true, "frequency_penalty": 0.123, "max_tokens": 321, "model": "some-model-id", "presence_penalty": 4.567, "response_format": {"type": "json_object"}, "seed": 654, "stop": ["stop1", "stop2"], "temperature": 8.976, "tool_choice": "auto", "tools": [{"function": {"name": "my-first-function-name", "description": "My first function description", "parameters": {"type": "object", "properties": {"first_argument": {"type": "string", "description": "First argument description"}, "second_argument": {"type": "string", "description": "Second argument description"}}, "required": ["first_argument", "second_argument"]}}, "type": "function"}, {"function": {"name": "my-second-function-name", "description": "My second function description", "parameters": {"type": "object", "properties": {"first_argument": {"type": "int", "description": "First argument description"}}, "required": ["first_argument"]}}, "type": "function"}], "top_p": 9.876, "key1": 1, "key2": true, "key3": "Some value", "key4": [1, 2, 3], "key5": {"key6": 2, "key7": false, "key8": "Some other value", "key9": [4, 5, 6, 7]}}'

    EMBEDDINGDS_JSON_REQUEST_PAYLOAD = '{"input": ["first phrase", "second phrase", "third phrase"], "dimensions": 2048, "encoding_format": "ubinary", "input_type": "query", "model": "some-model-id", "key1": 1, "key2": true, "key3": "Some value", "key4": [1, 2, 3], "key5": {"key6": 2, "key7": false, "key8": "Some other value", "key9": [4, 5, 6, 7]}}'

    IMAGE_EMBEDDINGDS_JSON_REQUEST_PAYLOAD = '{"input": [{"image": "", "text": "some text"}], "dimensions": 2048, "encoding_format": "ubinary", "input_type": "query", "model": "some-model-id", "key1": 1, "key2": true, "key3": "Some value", "key4": [1, 2, 3], "key5": {"key6": 2, "key7": false, "key8": "Some other value", "key9": [4, 5, 6, 7]}}'

    OUTPUT_FORMAT_JSON_SCHEMA: Dict[str, Any] = {
        "type": "object",
        "properties": {
            "distances": {
                "type": "array",
                "items": {
                    "type": "object",
                    "properties": {
                        "location1": {
                            "type": "string",
                            "description": "The name of the first location",
                        },
                        "location2": {
                            "type": "string",
                            "description": "The name of the second location",
                        },
                        "distance": {
                            "type": "integer",
                            "description": "The distance between the two locations in miles",
                        },
                    },
                    "required": ["location1", "location2", "distance"],
                    "additionalProperties": False,
                },
            },
        },
        "required": ["distances"],
        "additionalProperties": False,
    }

    # **********************************************************************************
    #
    #              HELPER METHODS TO LOAD AUTH CREDENTIALS FOR ALL CLIENTS
    #
    # **********************************************************************************

    # Method to load chat completions api-key credentials from environment variables
    def _load_chat_credentials_api_key(self, *, bad_key: bool, **kwargs):
        endpoint = kwargs.pop("azure_ai_chat_endpoint")
        key = "00000000000000000000000000000000" if bad_key else kwargs.pop("azure_ai_chat_key")
        credential = AzureKeyCredential(key)
        return endpoint, credential

    # Method to load chat completions Entra ID credentials from environment variables
    def _load_chat_credentials_entra_id(self, *, is_async: bool = False, **kwargs):
        endpoint = kwargs.pop("azure_ai_chat_endpoint")
        credential = self.get_credential(sdk.ChatCompletionsClient, is_async=is_async)
        return endpoint, credential

    # Method to load chat completions credentials when using OpenAI models.
    # See the "Data plane - inference" row in the table here for latest AOAI api-version:
    # https://aka.ms/azsdk/azure-ai-inference/azure-openai-api-versions
    def _load_aoai_chat_credentials(self, *, key_auth: bool, bad_key: bool, is_async: bool = False, **kwargs):
        endpoint = kwargs.pop("azure_openai_chat_endpoint")
        api_version = kwargs.pop("azure_openai_chat_api_version")
        if key_auth:
            key = "00000000000000000000000000000000" if bad_key else kwargs.pop("azure_openai_chat_key")
            # We no longer need to set "api-key" header, since the SDK was updated to set this header
            # (both "api-key" header and "Authorization": "Bearer ..." headers are now used for api key auth).
            # headers = {"api-key": key}
            credential = AzureKeyCredential(key)
            credential_scopes: list[str] = []
        else:
            credential = self.get_credential(sdk.ChatCompletionsClient, is_async=is_async)
            credential_scopes: list[str] = ["https://cognitiveservices.azure.com/.default"]
            # headers = {}
        return endpoint, credential, credential_scopes, api_version  # , headers

    def _load_aoai_audio_chat_credentials(self, *, key_auth: bool, bad_key: bool, is_async: bool = False, **kwargs):
        endpoint = kwargs.pop("azure_openai_chat_audio_endpoint")
        api_version = kwargs.pop("azure_openai_chat_audio_api_version")
        if key_auth:
            key = "00000000000000000000000000000000" if bad_key else kwargs.pop("azure_openai_chat_audio_key")
            # We no longer need to set "api-key" header, since the SDK was updated to set this header
            # (both "api-key" header and "Authorization": "Bearer ..." headers are now used for api key auth).
            # headers = {"api-key": key}
            credential = AzureKeyCredential(key)
            credential_scopes: list[str] = []
        else:
            credential = self.get_credential(sdk.ChatCompletionsClient, is_async=is_async)
            credential_scopes: list[str] = ["https://cognitiveservices.azure.com/.default"]
            # headers = {}
        return endpoint, credential, credential_scopes, api_version  # , headers

    def _load_embeddings_credentials_api_key(self, *, bad_key: bool, **kwargs):
        endpoint = kwargs.pop("azure_ai_embeddings_endpoint")
        key = "00000000000000000000000000000000" if bad_key else kwargs.pop("azure_ai_embeddings_key")
        credential = AzureKeyCredential(key)
        return endpoint, credential

    def _load_embeddings_credentials_entra_id(self, is_async: bool = False, **kwargs):
        endpoint = kwargs.pop("azure_ai_embeddings_endpoint")
        credential = self.get_credential(sdk.EmbeddingsClient, is_async=is_async)
        return endpoint, credential

    def _load_image_embeddings_credentials_key_auth(self, *, bad_key: bool, **kwargs):
        endpoint = kwargs.pop("azure_ai_image_embeddings_endpoint")
        key = "00000000000000000000000000000000" if bad_key else kwargs.pop("azure_ai_image_embeddings_key")
        credential = AzureKeyCredential(key)
        return endpoint, credential

    def _load_image_embeddings_credentials_entra_id(self, is_async: bool = False, **kwargs):
        endpoint = kwargs.pop("azure_ai_image_embeddings_endpoint")
        credential = self.get_credential(sdk.ImageEmbeddingsClient, is_async=is_async)
        return endpoint, credential

    # **********************************************************************************
    #
    #     HELPER METHODS TO CREATE CLIENTS USING THE SDK's load_client() FUNCTION
    #
    # **********************************************************************************

    # Methods to create sync and async clients using Load_client() function
    async def _load_async_chat_client(self, *, bad_key: bool = False, **kwargs) -> async_sdk.ChatCompletionsClient:
        endpoint, credential = self._load_chat_credentials_api_key(bad_key=bad_key, **kwargs)
        return await async_sdk.load_client(endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED)

    def _load_chat_client(self, *, bad_key: bool = False, **kwargs) -> sdk.ChatCompletionsClient:
        endpoint, credential = self._load_chat_credentials_api_key(bad_key=bad_key, **kwargs)
        return sdk.load_client(endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED)

    def _load_chat_client_on_aoai_endpoint(self, *, bad_key: bool = False, **kwargs) -> sdk.ChatCompletionsClient:
        endpoint, credential, credential_scopes, api_version = self._load_aoai_chat_credentials(
            key_auth=True, bad_key=False, **kwargs
        )
        return sdk.load_client(
            endpoint=endpoint,
            credential=credential,
            credential_scopes=credential_scopes,
            api_version=api_version,
            logging_enable=LOGGING_ENABLED,
        )

    async def _load_async_embeddings_client(self, *, bad_key: bool = False, **kwargs) -> async_sdk.EmbeddingsClient:
        endpoint, credential = self._load_embeddings_credentials_api_key(bad_key=bad_key, **kwargs)
        return await async_sdk.load_client(endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED)

    def _load_embeddings_client(self, *, bad_key: bool = False, **kwargs) -> sdk.EmbeddingsClient:
        endpoint, credential = self._load_embeddings_credentials_api_key(bad_key=bad_key, **kwargs)
        return sdk.load_client(endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED)

    async def _load_async_image_embeddings_client(
        self, *, bad_key: bool = False, **kwargs
    ) -> async_sdk.ImageEmbeddingsClient:
        endpoint, credential = self._load_image_embeddings_credentials_key_auth(bad_key=bad_key, **kwargs)
        return await async_sdk.load_client(endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED)

    def _load_image_embeddings_client(self, *, bad_key: bool = False, **kwargs) -> sdk.ImageEmbeddingsClient:
        endpoint, credential = self._load_image_embeddings_credentials_key_auth(bad_key=bad_key, **kwargs)
        return sdk.load_client(endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED)

    # **********************************************************************************
    #
    #                  HELPER METHODS TO DIRECTLY CREATE CLIENTS
    #
    # **********************************************************************************

    def _create_chat_client(
        self, *, bad_key: bool = False, key_auth: bool = True, **kwargs
    ) -> sdk.ChatCompletionsClient:
        if key_auth:
            endpoint, credential = self._load_chat_credentials_api_key(bad_key=bad_key, **kwargs)
        else:
            endpoint, credential = self._load_chat_credentials_entra_id(**kwargs)
        return sdk.ChatCompletionsClient(
            endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED, **kwargs
        )

    # Methos to create the different sync and async clients directly
    def _create_async_chat_client(
        self, *, bad_key: bool = False, key_auth: bool = True, **kwargs
    ) -> async_sdk.ChatCompletionsClient:
        if key_auth:
            endpoint, credential = self._load_chat_credentials_api_key(bad_key=bad_key, **kwargs)
        else:
            endpoint, credential = self._load_chat_credentials_entra_id(is_async=True, **kwargs)
        return async_sdk.ChatCompletionsClient(
            endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED, **kwargs
        )

    def _create_aoai_chat_client(
        self, *, key_auth: bool = True, bad_key: bool = False, **kwargs
    ) -> sdk.ChatCompletionsClient:
        endpoint, credential, credential_scopes, api_version = self._load_aoai_chat_credentials(
            key_auth=key_auth, bad_key=bad_key, **kwargs
        )
        return sdk.ChatCompletionsClient(
            endpoint=endpoint,
            credential=credential,
            credential_scopes=credential_scopes,
            api_version=api_version,
            logging_enable=LOGGING_ENABLED,
        )

    def _create_async_aoai_chat_client(
        self, *, key_auth: bool = True, bad_key: bool = False, **kwargs
    ) -> async_sdk.ChatCompletionsClient:
        endpoint, credential, credential_scopes, api_version = self._load_aoai_chat_credentials(
            key_auth=True, bad_key=bad_key, is_async=True, **kwargs
        )
        return async_sdk.ChatCompletionsClient(
            endpoint=endpoint,
            credential=credential,
            credential_scopes=credential_scopes,
            api_version=api_version,
            logging_enable=LOGGING_ENABLED,
        )

    def _create_aoai_audio_chat_client(
        self, *, key_auth: bool = True, bad_key: bool = False, **kwargs
    ) -> sdk.ChatCompletionsClient:
        endpoint, credential, credential_scopes, api_version = self._load_aoai_audio_chat_credentials(
            key_auth=key_auth, bad_key=bad_key, **kwargs
        )
        return sdk.ChatCompletionsClient(
            endpoint=endpoint,
            credential=credential,
            credential_scopes=credential_scopes,
            api_version=api_version,
            logging_enable=LOGGING_ENABLED,
        )

    def _create_async_aoai_audio_chat_client(
        self, *, key_auth: bool = True, bad_key: bool = False, **kwargs
    ) -> async_sdk.ChatCompletionsClient:
        endpoint, credential, credential_scopes, api_version = self._load_aoai_audio_chat_credentials(
            key_auth=True, bad_key=bad_key, is_async=True, **kwargs
        )
        return async_sdk.ChatCompletionsClient(
            endpoint=endpoint,
            credential=credential,
            credential_scopes=credential_scopes,
            api_version=api_version,
            logging_enable=LOGGING_ENABLED,
        )

    def _create_async_embeddings_client(
        self, *, bad_key: bool = False, key_auth: bool = True, **kwargs
    ) -> async_sdk.EmbeddingsClient:
        if key_auth:
            endpoint, credential = self._load_embeddings_credentials_api_key(bad_key=bad_key, **kwargs)
        else:
            endpoint, credential = self._load_embeddings_credentials_entra_id(is_async=True, **kwargs)
        return async_sdk.EmbeddingsClient(
            endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED, **kwargs
        )

    def _create_embeddings_client(
        self, *, bad_key: bool = False, key_auth: bool = True, **kwargs
    ) -> sdk.EmbeddingsClient:
        if key_auth:
            endpoint, credential = self._load_embeddings_credentials_api_key(bad_key=bad_key, **kwargs)
        else:
            endpoint, credential = self._load_embeddings_credentials_entra_id(**kwargs)
        return sdk.EmbeddingsClient(endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED, **kwargs)

    def _create_image_embeddings_client(
        self, *, bad_key: bool = False, key_auth: bool = True, **kwargs
    ) -> sdk.ImageEmbeddingsClient:
        if key_auth:
            endpoint, credential = self._load_image_embeddings_credentials_key_auth(bad_key=bad_key, **kwargs)
        else:
            endpoint, credential = self._load_image_embeddings_credentials_entra_id(**kwargs)
        return sdk.ImageEmbeddingsClient(
            endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED, **kwargs
        )

    def _create_async_image_embeddings_client(
        self, *, bad_key: bool = False, key_auth: bool = True, **kwargs
    ) -> async_sdk.ImageEmbeddingsClient:
        if key_auth:
            endpoint, credential = self._load_image_embeddings_credentials_key_auth(bad_key=bad_key, **kwargs)
        else:
            endpoint, credential = self._load_image_embeddings_credentials_entra_id(is_async=True, **kwargs)
        return async_sdk.ImageEmbeddingsClient(
            endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED, **kwargs
        )

    def _create_embeddings_client_with_chat_completions_credentials(self, **kwargs) -> sdk.EmbeddingsClient:
        endpoint = kwargs.pop("azure_ai_chat_endpoint")
        key = kwargs.pop("azure_ai_chat_key")
        credential = AzureKeyCredential(key)
        return sdk.EmbeddingsClient(endpoint=endpoint, credential=credential, logging_enable=LOGGING_ENABLED)

    # **********************************************************************************
    #
    #             HELPER METHODS TO VALIDATE TEST RESULTS
    #
    # **********************************************************************************

    def _validate_embeddings_json_request_payload(self) -> None:
        headers = self.pipeline_request.http_request.headers
        print(f"Actual HTTP request headers: {self.pipeline_request.http_request.headers}")
        print(f"Actual JSON request payload: {self.pipeline_request.http_request.data}")
        assert headers["Content-Type"] == "application/json"
        assert headers["Content-Length"] == "311"
        assert headers["extra-parameters"] == "pass-through"
        assert headers["Accept"] == "application/json"
        assert headers["some_header"] == "some_header_value"
        assert "MyAppId azsdk-python-ai-inference/" in headers["User-Agent"]
        assert " Python/" in headers["User-Agent"]
        assert headers["Authorization"] == "Bearer key-value"
        assert headers["api-key"] == "key-value"
        assert self.pipeline_request.http_request.data == self.EMBEDDINGDS_JSON_REQUEST_PAYLOAD

    def _validate_image_embeddings_json_request_payload(self) -> None:
        headers = self.pipeline_request.http_request.headers
        print(f"Actual HTTP request headers: {self.pipeline_request.http_request.headers}")
        print(f"Actual JSON request payload: {self.pipeline_request.http_request.data}")
        assert headers["Content-Type"] == "application/json"
        assert headers["Content-Length"] == "10364"
        assert headers["extra-parameters"] == "pass-through"
        assert headers["Accept"] == "application/json"
        assert headers["some_header"] == "some_header_value"
        assert "MyAppId azsdk-python-ai-inference/" in headers["User-Agent"]
        assert " Python/" in headers["User-Agent"]
        assert headers["Authorization"] == "Bearer key-value"
        assert headers["api-key"] == "key-value"
        assert self.pipeline_request.http_request.data == self.IMAGE_EMBEDDINGDS_JSON_REQUEST_PAYLOAD

    def _validate_chat_completions_json_request_payload(self) -> None:
        print(f"Actual HTTP request headers: {self.pipeline_request.http_request.headers}")
        print(f"Actual JSON request payload: {self.pipeline_request.http_request.data}")
        headers = self.pipeline_request.http_request.headers
        assert headers["Content-Type"] == "application/json"
        assert headers["Content-Length"] == "1840"
        assert headers["extra-parameters"] == "pass-through"
        assert headers["Accept"] == "application/json"
        assert headers["some_header"] == "some_header_value"
        assert "MyAppId azsdk-python-ai-inference/" in headers["User-Agent"]
        assert " Python/" in headers["User-Agent"]
        assert headers["Authorization"] == "Bearer key-value"
        assert headers["api-key"] == "key-value"
        assert self.pipeline_request.http_request.data == self.CHAT_COMPLETIONS_JSON_REQUEST_PAYLOAD

    @staticmethod
    def _validate_model_info_result(
        model_info: sdk.models.ModelInfo, expected_model_type: Union[str, sdk.models.ModelType]
    ):
        assert model_info.model_name is not None
        assert len(model_info.model_name) > 0
        assert model_info.model_provider_name is not None
        assert len(model_info.model_provider_name) > 0
        assert model_info.model_type is not None
        assert model_info.model_type == expected_model_type

    @staticmethod
    def _validate_model_extras(body: str, headers: Dict[str, str]):
        assert headers is not None
        assert headers["extra-parameters"] == "pass-through"
        assert body is not None
        try:
            body_json = json.loads(body)
        except json.JSONDecodeError:
            print("Invalid JSON format")
        assert body_json["n"] == 1

    @staticmethod
    def _validate_chat_completions_result(
        response: sdk.models.ChatCompletions,
        contains: List[str],
        *,
        is_aoai: Optional[bool] = False,
        is_json: Optional[bool] = False,
    ):
        assert any(item in response.choices[0].message.content for item in contains)
        assert response.choices[0].message.role == sdk.models.ChatRole.ASSISTANT
        assert response.choices[0].finish_reason == sdk.models.CompletionsFinishReason.STOPPED
        assert response.choices[0].index == 0
        if is_aoai:
            assert bool(ModelClientTestBase.REGEX_AOAI_RESULT_ID.match(response.id))
        else:
            assert bool(ModelClientTestBase.REGEX_RESULT_ID.match(response.id))
        assert response.created is not None
        assert response.created != ""
        assert response.model is not None
        assert response.model != ""
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens == response.usage.prompt_tokens + response.usage.completion_tokens
        if is_json:
            # Validate legal JSON format by parsing it
            json_data = json.loads(response.choices[0].message.content)

    @staticmethod
    def _validate_chat_completions_tool_result(response: sdk.models.ChatCompletions):
        assert response.choices[0].message.content == None or response.choices[0].message.content == ""
        assert response.choices[0].message.role == sdk.models.ChatRole.ASSISTANT
        assert response.choices[0].finish_reason == sdk.models.CompletionsFinishReason.TOOL_CALLS
        assert response.choices[0].index == 0
        function_args = json.loads(response.choices[0].message.tool_calls[0].function.arguments.replace("'", '"'))
        print(function_args)
        assert function_args["city"].lower() == "seattle"
        assert function_args["days"] == "2"
        assert bool(ModelClientTestBase.REGEX_RESULT_ID.match(response.id))
        assert response.created is not None
        assert response.created != ""
        assert response.model is not None
        # assert response.model != ""
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens == response.usage.prompt_tokens + response.usage.completion_tokens

    @staticmethod
    def _validate_chat_completions_update(update: sdk.models.StreamingChatCompletionsUpdate, first: bool) -> str:
        if first:
            # Why is 'content','created' and 'object' missing in the first update?
            assert update.choices[0].delta.role == sdk.models.ChatRole.ASSISTANT
        else:
            assert update.choices[0].delta.role == None
            assert update.choices[0].delta.content != None
            assert update.created is not None
            assert update.created != ""
        assert update.choices[0].delta.tool_calls == None
        assert update.choices[0].index == 0
        assert update.id is not None
        assert bool(ModelClientTestBase.REGEX_RESULT_ID.match(update.id))
        assert update.model is not None
        assert update.model != ""
        if update.choices[0].delta.content != None:
            return update.choices[0].delta.content
        else:
            return ""

    @staticmethod
    def _validate_chat_completions_streaming_result(response: sdk.models.StreamingChatCompletions):
        count = 0
        content = ""
        for update in response:
            content += ModelClientTestBase._validate_chat_completions_update(update, count == 0)
            count += 1
        assert count > 2
        assert len(content) > 100  # Some arbitrary number
        # The last update should have a finish reason and usage
        assert update.choices[0].finish_reason == sdk.models.CompletionsFinishReason.STOPPED
        assert update.usage.prompt_tokens > 0
        assert update.usage.completion_tokens > 0
        assert update.usage.total_tokens == update.usage.prompt_tokens + update.usage.completion_tokens
        if ModelClientTestBase.PRINT_RESULT:
            print(content)

    @staticmethod
    async def _validate_async_chat_completions_streaming_result(response: sdk.models.AsyncStreamingChatCompletions):
        count = 0
        content = ""
        async for update in response:
            content += ModelClientTestBase._validate_chat_completions_update(update, count == 0)
            count += 1
        assert count > 2
        assert len(content) > 100  # Some arbitrary number
        # The last update should have a finish reason and usage
        assert update.choices[0].finish_reason == sdk.models.CompletionsFinishReason.STOPPED
        assert update.usage.prompt_tokens > 0
        assert update.usage.completion_tokens > 0
        assert update.usage.total_tokens == update.usage.prompt_tokens + update.usage.completion_tokens
        if ModelClientTestBase.PRINT_RESULT:
            print(content)

    @staticmethod
    def _validate_embeddings_result(
        response: sdk.models.EmbeddingsResult,
        encoding_format: sdk.models.EmbeddingEncodingFormat = sdk.models.EmbeddingEncodingFormat.FLOAT,
    ):
        assert response is not None
        assert response.data is not None
        assert len(response.data) == 3
        for i in [0, 1, 2]:
            assert response.data[i] is not None
            assert response.data[i].index == i
            if encoding_format == sdk.models.EmbeddingEncodingFormat.FLOAT:
                assert isinstance(response.data[i].embedding, List)
                assert len(response.data[i].embedding) > 0
                assert response.data[i].embedding[0] != 0.0
                assert response.data[i].embedding[-1] != 0.0
            elif encoding_format == sdk.models.EmbeddingEncodingFormat.BASE64:
                assert isinstance(response.data[i].embedding, str)
                assert len(response.data[i].embedding) > 0
                assert bool(ModelClientTestBase.REGEX_BASE64_STRING.match(response.data[i].embedding))  # type: ignore[arg-type]
            else:
                raise ValueError(f"Unsupported encoding format: {encoding_format}")
        assert bool(ModelClientTestBase.REGEX_RESULT_ID.match(response.id))
        # assert len(response.model) > 0  # At the time of writing this test, this JSON field existed but was empty
        assert response.usage.prompt_tokens > 0
        assert response.usage.total_tokens == response.usage.prompt_tokens

    @staticmethod
    def _validate_image_embeddings_result(
        response: sdk.models.EmbeddingsResult,
        encoding_format: sdk.models.EmbeddingEncodingFormat = sdk.models.EmbeddingEncodingFormat.FLOAT,
    ):
        assert response is not None
        assert response.data is not None
        assert len(response.data) == 1
        for i in [0]:
            assert response.data[i] is not None
            assert response.data[i].index == i
            if encoding_format == sdk.models.EmbeddingEncodingFormat.FLOAT:
                assert isinstance(response.data[i].embedding, List)
                assert len(response.data[i].embedding) > 0
                assert response.data[i].embedding[0] != 0.0
                assert response.data[i].embedding[-1] != 0.0
            elif encoding_format == sdk.models.EmbeddingEncodingFormat.BASE64:
                assert isinstance(response.data[i].embedding, str)
                assert len(response.data[i].embedding) > 0
                assert bool(ModelClientTestBase.REGEX_BASE64_STRING.match(response.data[i].embedding))  # type: ignore[arg-type]
            else:
                raise ValueError(f"Unsupported encoding format: {encoding_format}")
        assert bool(ModelClientTestBase.REGEX_RESULT_ID.match(response.id))
        # assert len(response.model) > 0  # At the time of writing this test, this JSON field existed but was empty
        assert response.usage.prompt_tokens > 0
        assert response.usage.total_tokens == response.usage.prompt_tokens

    # **********************************************************************************
    #
    #                   HELPER METHODS TO PRINT RESULTS
    #
    # **********************************************************************************

    @staticmethod
    def _print_model_info_result(model_info: sdk.models.ModelInfo):
        if ModelClientTestBase.PRINT_RESULT:
            print(" Model info:")
            print("\tmodel_name: {}".format(model_info.model_name))
            print("\tmodel_type: {}".format(model_info.model_type))
            print("\tmodel_provider_name: {}".format(model_info.model_provider_name))

    @staticmethod
    def _print_chat_completions_result(response: sdk.models.ChatCompletions):
        if ModelClientTestBase.PRINT_RESULT:
            print(" Chat Completions response:")
            for choice in response.choices:
                print(f"\tchoices[0].message.content: {choice.message.content}")
                print(f"\tchoices[0].message.tool_calls: {choice.message.tool_calls}")
                print("\tchoices[0].message.role: {}".format(choice.message.role))
                print("\tchoices[0].finish_reason: {}".format(choice.finish_reason))
                print("\tchoices[0].index: {}".format(choice.index))
            print("\tid: {}".format(response.id))
            print("\tcreated: {}".format(response.created))
            print("\tmodel: {}".format(response.model))
            print("\tusage.prompt_tokens: {}".format(response.usage.prompt_tokens))
            print("\tusage.completion_tokens: {}".format(response.usage.completion_tokens))
            print("\tusage.total_tokens: {}".format(response.usage.total_tokens))

    @staticmethod
    def _print_embeddings_result(
        response: sdk.models.EmbeddingsResult,
        encoding_format: sdk.models.EmbeddingEncodingFormat = sdk.models.EmbeddingEncodingFormat.FLOAT,
    ):
        if ModelClientTestBase.PRINT_RESULT:
            print("Embeddings response:")
            for item in response.data:
                if encoding_format == sdk.models.EmbeddingEncodingFormat.FLOAT:
                    length = len(item.embedding)
                    print(
                        f"data[{item.index}] (vector length={length}): "
                        f"[{item.embedding[0]}, {item.embedding[1]}, "
                        f"..., {item.embedding[length-2]}, {item.embedding[length-1]}]"
                    )
                elif encoding_format == sdk.models.EmbeddingEncodingFormat.BASE64:
                    print(
                        f"data[{item.index}] encoded (string length={len(item.embedding)}): "
                        f'"{item.embedding[:32]}...{item.embedding[-32:]}"'
                    )
                else:
                    raise ValueError(f"Unsupported encoding format: {encoding_format}")
            print(f"\tid: {response.id}")
            print(f"\tmodel: {response.model}")
            print(f"\tusage.prompt_tokens: {response.usage.prompt_tokens}")
            print(f"\tusage.total_tokens: {response.usage.total_tokens}")

    # **********************************************************************************
    #
    #                         OTHER HELPER METHODS
    #
    # **********************************************************************************

    def request_callback(self, pipeline_request) -> None:
        self.pipeline_request = pipeline_request

    @staticmethod
    def _get_image_embeddings_input(with_text: Optional[bool] = True) -> sdk.models.ImageEmbeddingInput:
        local_folder = path.dirname(path.abspath(__file__))
        image_file = path.join(local_folder, "test_image1.png")
        if with_text:
            return sdk.models.ImageEmbeddingInput.load(
                image_file=image_file,
                image_format="png",
                text="some text",
            )
        else:
            return sdk.models.ImageEmbeddingInput.load(
                image_file=image_file,
                image_format="png",
            )

    @staticmethod
    def _read_text_file(file_name: str) -> io.BytesIO:
        """
        Reads a text file and returns a BytesIO object with the file content in UTF-8 encoding.
        The file is expected to be in the same directory as this Python script.
        """
        with Path(__file__).with_name(file_name).open("r") as f:
            return io.BytesIO(f.read().encode("utf-8"))


# **********************************************************************************
#
#                         OTHER HELPER CLASSES
#
# **********************************************************************************


class HttpResponseForUnitTests(HttpResponse):

    def __init__(self, response_bytes: List[bytes]):
        self._response_bytes = response_bytes

    # Required to support context management
    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        pass

    # Implementation of HttpResponse abstract base class methods.
    # Only the first one requires an implementation for this test to work.
    def iter_bytes(self):
        for response_byte in self._response_bytes:
            yield response_byte

    def close(self):
        pass

    def iter_raw(self):
        pass

    def json(self):
        pass

    def raise_for_status(self):
        pass

    def text(self):
        pass

    def read(self):
        pass

    # Implementation of HttpResponse abstract base class properties
    # None of these are used by test code.
    @property
    def content(self):
        pass

    @property
    def content_type(self):
        pass

    @property
    def encoding(self):
        pass

    @property
    def headers(self):
        pass

    @property
    def is_closed(self):
        pass

    @property
    def is_stream_consumed(self):
        pass

    @property
    def reason(self):
        pass

    @property
    def request(self):
        pass

    @property
    def status_code(self):
        pass

    @property
    def url(self):
        pass


class AsyncHttpResponseForUnitTests(AsyncHttpResponse):

    def __init__(self, response_bytes: List[bytes]):
        self._response_bytes = response_bytes

    # Required to support context management
    def __aenter__(self):
        return self

    def __aexit__(self, exc_type, exc_val, exc_tb):
        pass

    # Implementation of HttpResponse abstract base class methods.
    # Only the first one requires an implementation for this test to work.
    async def iter_bytes(self):
        for response_byte in self._response_bytes:
            yield response_byte

    async def close(self):
        pass

    async def iter_raw(self):
        pass

    async def json(self):
        pass

    async def raise_for_status(self):
        pass

    async def text(self):
        pass

    async def read(self):
        pass

    # Implementation of HttpResponse abstract base class properties
    # None of these are used by test code.
    @property
    def content(self):
        pass

    @property
    def content_type(self):
        pass

    @property
    def encoding(self):
        pass

    @property
    def headers(self):
        pass

    @property
    def is_closed(self):
        pass

    @property
    def is_stream_consumed(self):
        pass

    @property
    def reason(self):
        pass

    @property
    def request(self):
        pass

    @property
    def status_code(self):
        pass

    @property
    def url(self):
        pass