1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
# Azure AI Projects client library for Python
The AI Projects client library (in preview) is part of the Azure AI Foundry SDK, and provides easy access to
resources in your Azure AI Foundry Project. Use it to:
* **Create and run Agents** using the `.agents` property on the client.
* **Get an AzureOpenAI client** using the `.inference.get_azure_openai_client` method.
* **Enumerate AI Models** deployed to your Foundry Project using the `.deployments` operations.
* **Enumerate connected Azure resources** in your Foundry project using the `.connections` operations.
* **Upload documents and create Datasets** to reference them using the `.datasets` operations.
* **Create and enumerate Search Indexes** using the `.indexes` operations.
* **Get an Azure AI Inference client** for chat completions, text or image embeddings using the `.inference` operations.
* **Read a Prompty file or string** and render messages for inference clients, using the `PromptTemplate` class.
* **Run Evaluations** to assess the performance of generative AI applications, using the `evaluations` operations.
* **Enable OpenTelemetry tracing** using the `enable_telemetry` function.
> **Note:** There have been significant updates with the release of version 1.0.0b11, including breaking changes.
please see new code snippets below and the samples folder. Agents are now implemented in a separate package `azure-ai-agents`
which will get installed automatically when you install `azure-ai-projects`. You can continue using ".agents"
operations on the `AIProjectsClient` to create, run and delete agents, as before.
See [full set of Agents samples](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/ai/azure-ai-agents/samples)
in their new location. Also see the [change log for the 1.0.0b11 release](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-projects/CHANGELOG.md).
[Product documentation](https://aka.ms/azsdk/azure-ai-projects/product-doc)
| [Samples][samples]
| [API reference documentation](https://aka.ms/azsdk/azure-ai-projects/python/reference)
| [Package (PyPI)](https://aka.ms/azsdk/azure-ai-projects/python/package)
| [SDK source code](https://aka.ms/azsdk/azure-ai-projects/python/code)
## Reporting issues
To report an issue with the client library, or request additional features, please open a GitHub issue [here](https://github.com/Azure/azure-sdk-for-python/issues). Mention the package name "azure-ai-projects" in the title or content.
## Getting started
### Prerequisite
- Python 3.9 or later.
- An [Azure subscription][azure_sub].
- A [project in Azure AI Foundry](https://learn.microsoft.com/azure/ai-studio/how-to/create-projects).
- The project endpoint URL of the form `https://<your-ai-services-account-name>.services.ai.azure.com/api/projects/<your-project-name>`. It can be found in your Azure AI Foundry Project overview page. Below we will assume the environment variable `PROJECT_ENDPOINT` was defined to hold this value.
- An Entra ID token for authentication. Your application needs an object that implements the [TokenCredential](https://learn.microsoft.com/python/api/azure-core/azure.core.credentials.tokencredential) interface. Code samples here use [DefaultAzureCredential](https://learn.microsoft.com/python/api/azure-identity/azure.identity.defaultazurecredential). To get that working, you will need:
* An appropriate role assignment. see [Role-based access control in Azure AI Foundry portal](https://learn.microsoft.com/azure/ai-foundry/concepts/rbac-ai-foundry). Role assigned can be done via the "Access Control (IAM)" tab of your Azure AI Project resource in the Azure portal.
* [Azure CLI](https://learn.microsoft.com/cli/azure/install-azure-cli) installed.
* You are logged into your Azure account by running `az login`.
### Install the package
```bash
pip install azure-ai-projects
```
## Key concepts
### Create and authenticate the client with Entra ID
Entra ID is the only authentication method supported at the moment by the client.
To construct a synchronous client:
```python
import os
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
project_client = AIProjectClient(
credential=DefaultAzureCredential(),
endpoint=os.environ["PROJECT_ENDPOINT"],
)
```
To construct an asynchronous client, Install the additional package [aiohttp](https://pypi.org/project/aiohttp/):
```bash
pip install aiohttp
```
and update the code above to import `asyncio`, and import `AIProjectClient` from the `azure.ai.projects.aio` namespace:
```python
import os
import asyncio
from azure.ai.projects.aio import AIProjectClient
from azure.core.credentials import AzureKeyCredential
project_client = AIProjectClient.from_connection_string(
credential=DefaultAzureCredential(),
endpoint=os.environ["PROJECT_ENDPOINT"],
)
```
**Note:** Support for project connection string and hub-based projects has been discontinued. We recommend creating a new Azure AI Foundry resource utilizing project endpoint. If this is not possible, please pin the version of or pin the version of `azure-ai-projects` to `1.0.0b10` or earlier.
## Examples
### Performing Agent operations
The `.agents` property on the `AIProjectsClient` gives you access to an authenticated `AgentsClient` from the `azure-ai-agents` package. Below we show how to create an Agent and delete it. To see what you can do with the `agent` you created, see the [many samples](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/ai/azure-ai-agents/samples) associated with the `azure-ai-agents` package.
The code below assumes `model_deployment_name` (a string) is defined. It's the deployment name of an AI model in your Foundry Project, as shown in the "Models + endpoints" tab, under the "Name" column.
<!-- SNIPPET:sample_agents.agents_sample -->
```python
agent = project_client.agents.create_agent(
model=model_deployment_name,
name="my-agent",
instructions="You are helpful agent",
)
print(f"Created agent, agent ID: {agent.id}")
# Do something with your Agent!
# See samples here https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/ai/azure-ai-agents/samples
project_client.agents.delete_agent(agent.id)
print("Deleted agent")
```
<!-- END SNIPPET -->
### Get an authenticated AzureOpenAI client
Your Azure AI Foundry project may have one or more OpenAI models deployed that support chat completions. Use the code below to get an authenticated [AzureOpenAI](https://github.com/openai/openai-python?tab=readme-ov-file#microsoft-azure-openai) from the [openai](https://pypi.org/project/openai/) package, and execute a chat completions call.
The code below assumes `model_deployment_name` (a string) is defined. It's the deployment name of an AI model in your Foundry Project, or a connected Azure OpenAI resource. As shown in the "Models + endpoints" tab, under the "Name" column.
Update the `api_version` value with one found in the "Data plane - inference" row [in this table](https://learn.microsoft.com/azure/ai-services/openai/reference#api-specs).
<!-- SNIPPET:sample_chat_completions_with_azure_openai_client.aoai_sample-->
```python
print(
"Get an authenticated Azure OpenAI client for the parent AI Services resource, and perform a chat completion operation:"
)
with project_client.inference.get_azure_openai_client(api_version="2024-10-21") as client:
response = client.chat.completions.create(
model=model_deployment_name,
messages=[
{
"role": "user",
"content": "How many feet are in a mile?",
},
],
)
print(response.choices[0].message.content)
print(
"Get an authenticated Azure OpenAI client for a connected Azure OpenAI service, and perform a chat completion operation:"
)
with project_client.inference.get_azure_openai_client(
api_version="2024-10-21", connection_name=connection_name
) as client:
response = client.chat.completions.create(
model=model_deployment_name,
messages=[
{
"role": "user",
"content": "How many feet are in a mile?",
},
],
)
print(response.choices[0].message.content)
```
<!-- END SNIPPET -->
See the "inference" folder in the [package samples][samples] for additional samples.
### Get an authenticated ChatCompletionsClient
Your Azure AI Foundry project may have one or more AI models deployed that support chat completions. These could be OpenAI models, Microsoft models, or models from other providers. Use the code below to get an authenticated [ChatCompletionsClient](https://learn.microsoft.com/python/api/azure-ai-inference/azure.ai.inference.chatcompletionsclient) from the [azure-ai-inference](https://pypi.org/project/azure-ai-inference/) package, and execute a chat completions call.
First, install the package:
```bash
pip install azure-ai-inference
```
Then run the code below. Here we assume `model_deployment_name` (a string) is defined. It's the deployment name of an AI model in your Foundry Project, as shown in the "Models + endpoints" tab, under the "Name" column.
<!-- SNIPPET:sample_chat_completions_with_azure_ai_inference_client.inference_sample-->
```python
with project_client.inference.get_chat_completions_client() as client:
response = client.complete(
model=model_deployment_name, messages=[UserMessage(content="How many feet are in a mile?")]
)
print(response.choices[0].message.content)
```
<!-- END SNIPPET -->
See the "inference" folder in the [package samples][samples] for additional samples, including getting an authenticated [EmbeddingsClient](https://learn.microsoft.com/python/api/azure-ai-inference/azure.ai.inference.embeddingsclient) and [ImageEmbeddingsClient](https://learn.microsoft.com/python/api/azure-ai-inference/azure.ai.inference.imageembeddingsclient).
### Deployments operations
The code below shows some Deployments operations, which allow you to enumerate the AI models deployed to your AI Foundry Projects. These models can be seen in the "Models + endpoints" tab in your AI Foundry Project. Full samples can be found under the "deployment" folder in the [package samples][samples].
<!-- SNIPPET:sample_deployments.deployments_sample-->
```python
print("List all deployments:")
for deployment in project_client.deployments.list():
print(deployment)
print(f"List all deployments by the model publisher `{model_publisher}`:")
for deployment in project_client.deployments.list(model_publisher=model_publisher):
print(deployment)
print(f"List all deployments of model `{model_name}`:")
for deployment in project_client.deployments.list(model_name=model_name):
print(deployment)
print(f"Get a single deployment named `{model_deployment_name}`:")
deployment = project_client.deployments.get(model_deployment_name)
print(deployment)
```
<!-- END SNIPPET -->
### Connections operations
The code below shows some Connection operations, which allow you to enumerate the Azure Resources connected to your AI Foundry Projects. These connections can be seen in the "Management Center", in the "Connected resources" tab in your AI Foundry Project. Full samples can be found under the "connections" folder in the [package samples][samples].
<!-- SNIPPET:sample_connections.connections_sample-->
```python
print("List all connections:")
for connection in project_client.connections.list():
print(connection)
print("List all connections of a particular type:")
for connection in project_client.connections.list(
connection_type=ConnectionType.AZURE_OPEN_AI,
):
print(connection)
print("Get the default connection of a particular type, without its credentials:")
connection = project_client.connections.get_default(connection_type=ConnectionType.AZURE_OPEN_AI)
print(connection)
print("Get the default connection of a particular type, with its credentials:")
connection = project_client.connections.get_default(
connection_type=ConnectionType.AZURE_OPEN_AI, include_credentials=True
)
print(connection)
print(f"Get the connection named `{connection_name}`, without its credentials:")
connection = project_client.connections.get(connection_name)
print(connection)
print(f"Get the connection named `{connection_name}`, with its credentials:")
connection = project_client.connections.get(connection_name, include_credentials=True)
print(connection)
```
<!-- END SNIPPET -->
### Dataset operations
The code below shows some Dataset operations. Full samples can be found under the "datasets"
folder in the [package samples][samples].
<!-- SNIPPET:sample_datasets.datasets_sample-->
```python
print(
f"Upload a single file and create a new Dataset `{dataset_name}`, version `{dataset_version_1}`, to reference the file."
)
dataset: DatasetVersion = project_client.datasets.upload_file(
name=dataset_name,
version=dataset_version_1,
file_path=data_file,
connection_name=connection_name,
)
print(dataset)
print(
f"Upload files in a folder (including sub-folders) and create a new version `{dataset_version_2}` in the same Dataset, to reference the files."
)
dataset = project_client.datasets.upload_folder(
name=dataset_name,
version=dataset_version_2,
folder=data_folder,
connection_name=connection_name,
file_pattern=re.compile(r"\.(txt|csv|md)$", re.IGNORECASE),
)
print(dataset)
print(f"Get an existing Dataset version `{dataset_version_1}`:")
dataset = project_client.datasets.get(name=dataset_name, version=dataset_version_1)
print(dataset)
print(f"Get credentials of an existing Dataset version `{dataset_version_1}`:")
asset_credential = project_client.datasets.get_credentials(name=dataset_name, version=dataset_version_1)
print(asset_credential)
print("List latest versions of all Datasets:")
for dataset in project_client.datasets.list():
print(dataset)
print(f"Listing all versions of the Dataset named `{dataset_name}`:")
for dataset in project_client.datasets.list_versions(name=dataset_name):
print(dataset)
print("Delete all Dataset versions created above:")
project_client.datasets.delete(name=dataset_name, version=dataset_version_1)
project_client.datasets.delete(name=dataset_name, version=dataset_version_2)
```
<!-- END SNIPPET -->
### Indexes operations
The code below shows some Indexes operations. Full samples can be found under the "indexes"
folder in the [package samples][samples].
<!-- SNIPPET:sample_indexes.indexes_sample-->
```python
print(
f"Create Index `{index_name}` with version `{index_version}`, referencing an existing AI Search resource:"
)
index = project_client.indexes.create_or_update(
name=index_name,
version=index_version,
body=AzureAISearchIndex(connection_name=ai_search_connection_name, index_name=ai_search_index_name),
)
print(index)
print(f"Get Index `{index_name}` version `{index_version}`:")
index = project_client.indexes.get(name=index_name, version=index_version)
print(index)
print("List latest versions of all Indexes:")
for index in project_client.indexes.list():
print(index)
print(f"Listing all versions of the Index named `{index_name}`:")
for index in project_client.indexes.list_versions(name=index_name):
print(index)
print(f"Delete Index `{index_name}` version `{index_version}`:")
project_client.indexes.delete(name=index_name, version=index_version)
```
<!-- END SNIPPET -->
### Evaluation
Evaluation in Azure AI Project client library provides quantitive, AI-assisted quality and safety metrics to asses performance and Evaluate LLM Models, GenAI Application and Agents. Metrics are defined as evaluators. Built-in or custom evaluators can provide comprehensive evaluation insights.
The code below shows some evaluation operations. Full list of sample can be found under "evaluation" folder in the [package samples][samples]
<!-- SNIPPET:sample_evaluations.evaluations_sample-->
```python
print("Upload a single file and create a new Dataset to reference the file.")
dataset: DatasetVersion = project_client.datasets.upload_file(
name=dataset_name,
version=dataset_version,
file_path=data_file,
)
print(dataset)
print("Create an evaluation")
evaluation: Evaluation = Evaluation(
display_name="Sample Evaluation Test",
description="Sample evaluation for testing",
# Sample Dataset Id : azureai://accounts/<account_name>/projects/<project_name>/data/<dataset_name>/versions/<version>
data=InputDataset(id=dataset.id if dataset.id else ""),
evaluators={
"relevance": EvaluatorConfiguration(
id=EvaluatorIds.RELEVANCE.value,
init_params={
"deployment_name": model_deployment_name,
},
data_mapping={
"query": "${data.query}",
"response": "${data.response}",
},
),
"violence": EvaluatorConfiguration(
id=EvaluatorIds.VIOLENCE.value,
init_params={
"azure_ai_project": endpoint,
},
),
"bleu_score": EvaluatorConfiguration(
id=EvaluatorIds.BLEU_SCORE.value,
),
},
)
evaluation_response: Evaluation = project_client.evaluations.create(
evaluation,
headers={
"model-endpoint": model_endpoint,
"api-key": model_api_key,
},
)
print(evaluation_response)
print("Get evaluation")
get_evaluation_response: Evaluation = project_client.evaluations.get(evaluation_response.name)
print(get_evaluation_response)
print("List evaluations")
for evaluation in project_client.evaluations.list():
print(evaluation)
```
<!-- END SNIPPET -->
## Troubleshooting
### Exceptions
Client methods that make service calls raise an [HttpResponseError](https://learn.microsoft.com/python/api/azure-core/azure.core.exceptions.httpresponseerror) exception for a non-success HTTP status code response from the service. The exception's `status_code` will hold the HTTP response status code (with `reason` showing the friendly name). The exception's `error.message` contains a detailed message that may be helpful in diagnosing the issue:
```python
from azure.core.exceptions import HttpResponseError
...
try:
result = project_client.connections.list()
except HttpResponseError as e:
print(f"Status code: {e.status_code} ({e.reason})")
print(e.message)
```
For example, when you provide wrong credentials:
```text
Status code: 401 (Unauthorized)
Operation returned an invalid status 'Unauthorized'
```
### Logging
The client uses the standard [Python logging library](https://docs.python.org/3/library/logging.html). The SDK logs HTTP request and response details, which may be useful in troubleshooting. To log to stdout, add the following at the top of your Python script:
```python
import sys
import logging
# Acquire the logger for this client library. Use 'azure' to affect both
# 'azure.core` and `azure.ai.inference' libraries.
logger = logging.getLogger("azure")
# Set the desired logging level. logging.INFO or logging.DEBUG are good options.
logger.setLevel(logging.DEBUG)
# Direct logging output to stdout:
handler = logging.StreamHandler(stream=sys.stdout)
# Or direct logging output to a file:
# handler = logging.FileHandler(filename="sample.log")
logger.addHandler(handler)
# Optional: change the default logging format. Here we add a timestamp.
#formatter = logging.Formatter("%(asctime)s:%(levelname)s:%(name)s:%(message)s")
#handler.setFormatter(formatter)
```
By default logs redact the values of URL query strings, the values of some HTTP request and response headers (including `Authorization` which holds the key or token), and the request and response payloads. To create logs without redaction, add `logging_enable=True` to the client constructor:
```python
project_client = AIProjectClient(
credential=DefaultAzureCredential(),
endpoint=os.environ["PROJECT_ENDPOINT"],
logging_enable = True
)
```
Note that the log level must be set to `logging.DEBUG` (see above code). Logs will be redacted with any other log level.
Be sure to protect non redacted logs to avoid compromising security.
For more information, see [Configure logging in the Azure libraries for Python](https://aka.ms/azsdk/python/logging)
### Reporting issues
To report an issue with the client library, or request additional features, please open a GitHub issue [here](https://github.com/Azure/azure-sdk-for-python/issues). Mention the package name "azure-ai-projects" in the title or content.
## Next steps
Have a look at the [Samples](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/ai/azure-ai-projects/samples) folder, containing fully runnable Python code for synchronous and asynchronous clients.
## Contributing
This project welcomes contributions and suggestions. Most contributions require
you to agree to a Contributor License Agreement (CLA) declaring that you have
the right to, and actually do, grant us the rights to use your contribution.
For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether
you need to provide a CLA and decorate the PR appropriately (e.g., label,
comment). Simply follow the instructions provided by the bot. You will only
need to do this once across all repos using our CLA.
This project has adopted the
[Microsoft Open Source Code of Conduct][code_of_conduct]. For more information,
see the Code of Conduct FAQ or contact opencode@microsoft.com with any
additional questions or comments.
<!-- LINKS -->
[samples]: https://aka.ms/azsdk/azure-ai-projects/python/samples/
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[azure_sub]: https://azure.microsoft.com/free/
[evaluators]: https://learn.microsoft.com/azure/ai-studio/how-to/develop/evaluate-sdk
[azure_ai_evaluation]: https://learn.microsoft.com/python/api/overview/azure/ai-evaluation-readme
[evaluator_library]: https://learn.microsoft.com/azure/ai-studio/how-to/evaluate-generative-ai-app#view-and-manage-the-evaluators-in-the-evaluator-library
|